scholarly journals A Single Amino Acid Change in nsP1 Attenuates Neurovirulence of the Sindbis-Group Alphavirus S.A.AR86

2000 ◽  
Vol 74 (9) ◽  
pp. 4207-4213 ◽  
Author(s):  
Mark T. Heise ◽  
Dennis A. Simpson ◽  
Robert E. Johnston

ABSTRACT S.A.AR86, a member of the Sindbis group of alphaviruses, is neurovirulent in adult mice and has a unique threonine at position 538 of nsP1; nonneurovirulent members of this group of alphaviruses encode isoleucine. Isoleucine was introduced at position 538 in the wild-type S.A.AR86 infectious clone, ps55, and virus derived from this mutant clone, ps51, was significantly attenuated for neurovirulence compared to that derived from ps55. Intracranial (i.c.) s55 infection resulted in severe disease, including hind limb paresis, conjunctivitis, weight loss, and death in 89% of animals. In contrast, s51 caused fewer clinical signs and no mortality. Nevertheless, comparison of the virus derived from the mutant (ps51) and wild-type (ps55) S.A.AR86 molecular clones demonstrated that s51 grew as well as or better than the wild-type s55 virus in tissue culture and that viral titers in the brain following i.c. infection with s51 were equivalent to those of wild-type s55 virus. Analysis of viral replication within the brain by in situ hybridization revealed that both viruses established infection in similar regions of the brain at early times postinfection (12 to 72 h). However, at late times postinfection, the wild-type s55 virus had spread throughout large areas of the brain, while the s51 mutant exhibited a restricted pattern of replication. This suggests that s51 is either defective in spreading throughout the brain at late times postinfection or is cleared more rapidly than s55. Further evidence for the contribution of nsP1 Thr 538 to S.A.AR86 neurovirulence was provided by experiments in which a threonine residue was introduced at nsP1 position 538 of Sindbis virus strain TR339, which is nonneurovirulent in weanling mice. The resulting virus, 39ns1, demonstrated significantly increased neurovirulence and morbidity, including weight loss and hind limb paresis. These results demonstrate a role for alphavirus nonstructural protein genes in adult mouse neurovirulence.

2005 ◽  
Vol 71 (7) ◽  
pp. 3468-3474 ◽  
Author(s):  
Gyeong Tae Eom ◽  
Jae Kwang Song ◽  
Jung Hoon Ahn ◽  
Yeon Soo Seo ◽  
Joon Shick Rhee

ABSTRACT The ABC transporter (TliDEF) from Pseudomonas fluorescens SIK W1, which mediated the secretion of a thermostable lipase (TliA) into the extracellular space in Escherichia coli, was engineered using directed evolution (error-prone PCR) to improve its secretion efficiency. TliD mutants with increased secretion efficiency were identified by coexpressing the mutated tliD library with the wild-type tliA lipase in E. coli and by screening the library with a tributyrin-emulsified indicator plate assay and a microtiter plate-based assay. Four selected mutants from one round of error-prone PCR mutagenesis, T6, T8, T24, and T35, showed 3.2-, 2.6-, 2.9-, and 3.0-fold increases in the level of secretion of TliA lipase, respectively, but had almost the same level of expression of TliD in the membrane as the strain with the wild-type TliDEF transporter. These results indicated that the improved secretion of TliA lipase was mediated by the transporter mutations. Each mutant had a single amino acid change in the predicted cytoplasmic regions in the membrane domain of TliD, implying that the corresponding region of TliD was important for the improved and successful secretion of the target protein. We therefore concluded that the efficiency of secretion of a heterologous protein in E. coli can be enhanced by in vitro engineering of the ABC transporter.


2005 ◽  
Vol 25 (14) ◽  
pp. 5920-5932 ◽  
Author(s):  
Patrick J. Lynch ◽  
Hunter B. Fraser ◽  
Elena Sevastopoulos ◽  
Jasper Rine ◽  
Laura N. Rusche

ABSTRACT In Saccharomyces cerevisiae, Sum1p is a promoter-specific repressor. A single amino acid change generates the mutant Sum1-1p, which causes regional silencing at new loci where wild-type Sum1p does not act. Thus, Sum1-1p is a model for understanding how the spreading of repressive chromatin is regulated. When wild-type Sum1p was targeted to a locus where mutant Sum1-1p spreads, wild-type Sum1p did not spread as efficiently as mutant Sum1-1p did, despite being in the same genomic context. Thus, the SUM1-1 mutation altered the ability of the protein to spread. The spreading of Sum1-1p required both an enzymatically active deacetylase, Hst1p, and the N-terminal tail of histone H4, consistent with the spreading of Sum1-1p involving sequential modification of and binding to histone tails, as observed for other silencing proteins. Furthermore, deletion of the N-terminal tail of H4 caused Sum1-1p to return to loci where wild-type Sum1p acts, consistent with the SUM1-1 mutation increasing the affinity of the protein for H4 tails. These results imply that the spreading of repressive chromatin proteins is regulated by their affinities for histone tails. Finally, this study uncovered a functional connection between wild-type Sum1p and the origin recognition complex, and this relationship also contributes to mutant Sum1-1p localization.


2006 ◽  
Vol 80 (5) ◽  
pp. 2396-2404 ◽  
Author(s):  
Wen Jun Liu ◽  
Xiang Ju Wang ◽  
David C. Clark ◽  
Mario Lobigs ◽  
Roy A. Hall ◽  
...  

ABSTRACT Alpha/beta interferons (IFN-α/β) are key mediators of the innate immune response against viral infection. The ability of viruses to circumvent IFN-α/β responses plays a crucial role in determining the outcome of infection. In a previous study using subgenomic replicons of the Kunjin subtype of West Nile virus (WNVKUN), we demonstrated that the nonstructural protein NS2A is a major inhibitor of IFN-β promoter-driven transcription and that a single amino acid substitution in NS2A (Ala30 to Pro [A30P]) dramatically reduced its inhibitory effect (W. J. Liu, H. B. Chen, X. J. Wang, H. Huang, and A. A. Khromykh, J. Virol. 78:12225-12235). Here we show that incorporation of the A30P mutation into the WNVKUN genome results in a mutant virus which elicits more rapid induction and higher levels of synthesis of IFN-α/β in infected human A549 cells than that detected following wild-type WNVKUN infection. Consequently, replication of the WNVKUNNS2A/A30P mutant virus in these cells known to be high producers of IFN-α/β was abortive. In contrast, both the mutant and the wild-type WNVKUN produced similar-size plaques and replicated with similar efficiency in BHK cells which are known to be deficient in IFN-α/β production. The mutant virus was highly attenuated in neuroinvasiveness and also attenuated in neurovirulence in 3-week-old mice. Surprisingly, the mutant virus was also partially attenuated in IFN-α/βγ receptor knockout mice, suggesting that the A30P mutation may also play a role in more efficient activation of other antiviral pathways in addition to the IFN response. Immunization of wild-type mice with the mutant virus resulted in induction of an antibody response of similar magnitude to that observed in mice immunized with wild-type WNVKUN and gave complete protection against challenge with a lethal dose of the highly virulent New York 99 strain of WNV. The results confirm and extend our previous original findings on the role of the flavivirus NS2A protein in inhibition of a host antiviral response and demonstrate that the targeted disabling of a viral mechanism for evading the IFN response can be applied to the development of live attenuated flavivirus vaccine candidates.


2000 ◽  
Vol 74 (11) ◽  
pp. 5101-5107 ◽  
Author(s):  
Theresa A. Sergel ◽  
Lori W. McGinnes ◽  
Trudy G. Morrison

ABSTRACT The role of a leucine heptad repeat motif between amino acids 268 and 289 in the structure and function of the Newcastle disease virus (NDV) F protein was explored by introducing single point mutations into the F gene cDNA. The mutations affected either folding of the protein or the fusion activity of the protein. Two mutations, L275A and L282A, likely interfered with folding of the molecule since these proteins were not proteolytically cleaved, were minimally expressed at the cell surface, and formed aggregates. L268A mutant protein was cleaved and expressed at the cell surface although the protein migrated slightly slower than wild type on polyacrylamide gels, suggesting an alteration in conformation or processing. L268A protein was fusion inactive in the presence or absence of HN protein expression. Mutant L289A protein was expressed at the cell surface and proteolytically cleaved at better than wild-type levels. Most importantly, this protein mediated syncytium formation in the absence of HN protein expression although HN protein enhanced fusion activity. These results show that a single amino acid change in the F1 portion of the NDV F protein can alter the stringent requirement for HN protein expression in syncytium formation.


1990 ◽  
Vol 10 (9) ◽  
pp. 4778-4787 ◽  
Author(s):  
C Buchman ◽  
P Skroch ◽  
W Dixon ◽  
T D Tullius ◽  
M Karin

CUP2 is a copper-dependent transcriptional activator of the yeast CUP1 metallothionein gene. In the presence of Cu+ and Ag+) ions its DNA-binding domain is thought to fold as a cysteine-coordinated Cu cluster which recognizes the palindromic CUP1 upstream activation sequence (UASc). Using mobility shift, methylation interference, and DNase I and hydroxyl radical footprinting assays, we examined the interaction of wild-type and variant CUP2 proteins produced in Escherichia coli with the UASc. Our results suggest that CUP2 has a complex Cu-coordinated DNA-binding domain containing different parts that function as DNA-binding elements recognizing distinct sequence motifs embedded within the UASc. A single-amino-acid substitution of cysteine 11 with a tyrosine results in decreased Cu binding, apparent inactivation of one of the DNA-binding elements and a dramatic change in the recognition properties of CUP2. This variant protein interacts with only one part of the wild-type site and prefers to bind to a different half-site from the wild-type protein. Although the variant has about 10% of wild-type DNA-binding activity, it appears to be completely incapable of activating transcription.


2000 ◽  
Vol 182 (13) ◽  
pp. 3846-3849 ◽  
Author(s):  
Skorn Mongkolsuk ◽  
Wirongrong Whangsuk ◽  
Mayuree Fuangthong ◽  
Suvit Loprasert

ABSTRACT A spontaneous Xanthomonas campestris pv. phaseoli H2O2-resistant mutant emerged upon selection with 1 mM H2O2. In this report, we show that growth of this mutant under noninducing conditions gave high levels of catalase, alkyl hydroperoxide reductase (AhpC and AhpF), and OxyR. The H2O2 resistance phenotype was abolished inoxyR-minus derivatives of the mutant, suggesting that elevated levels and mutations in oxyR were responsible for the phenotype. Nucleotide sequence analysis of the oxyRmutant showed three nucleotide changes. These changes resulted in one silent mutation and two amino acid changes, one at a highly conserved location (G197 to D197) and the other at a nonconserved location (L301 to R301) in OxyR. Furthermore, these mutations in oxyRaffected expression of genes in the oxyR regulon. Expression of an oxyR-regulated gene, ahpC, was used to monitor the redox state of OxyR. In the parental strain, a high level of wild-type OxyR repressed ahpC expression. By contrast, expression of oxyR5 from the X. campestris pv. phaseoli H2O2-resistant mutant and its derivative oxyR5G197D with a single-amino-acid change on expression vectors activatedahpC expression in the absence of inducer. The other single-amino-acid mutant derivative of oxyR5L301R had effects on ahpC expression similar to those of the wild-type oxyR. However, when the two single mutations were combined, as in oxyR5, these mutations had an additive effect on activation of ahpC expression.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2709-2709 ◽  
Author(s):  
Jacqueline S Garcia ◽  
Jozef Madzo ◽  
Devin Cooper ◽  
Sarah A Jackson ◽  
Kenan Onel ◽  
...  

Abstract Abstract 2709 Introduction: RUNX1 is a critical transcription factor in the regulation of normal hematopoiesis. Inherited RUNX1 mutations have been identified as the culprit genetic lesion in Familial Platelet Disorder (FPD; OMIM 601399), a rare autosomal dominant condition with a propensity to myeloid malignancy. The spectrum of RUNX1 mutations causing the FPD/acute myeloid leukemia (AML) syndrome includes frameshift and termination mutations detected throughout the gene, and missense mutations clustered within the highly conserved RUNT homology domain (RHD), which is responsible for both DNA binding and heterodimerization with CBFβ/PEBP2β, the non-DNA binding regulatory subunit. We present a new FPD/AML pedigree with a novel missense mutation leading to a single amino acid change, L56S. This L56S mutation is the first reported point mutation in this syndrome to be found outside of the RHD. Patients and Methods: Our new pedigree involves a 41-year-old man (proband) diagnosed with myelodysplastic syndrome (MDS, specifically refractory anemia with excess blasts type-2) with a normal karyotype. He was initiated on azacitidine, which was administered on a seven-day treatment schedule every four weeks. Bone marrow biopsy analysis after six monthly cycles of azacitidine showed persistent MDS, with similar findings after a total of ten monthly cycles. Given his lack of a clinical response, his young age and good performance status, he was referred to The University of Chicago for allogeneic hematopoietic stem cell transplantation (HCT). Routine pre-transplant evaluation revealed mild thrombocytopenia (platelets = 123,000 K/μl) in his HLA-matched brother. In addition, his father was reported to have thrombocytopenia. Clinical concern for an inherited condition initiated the investigation for a RUNX1 mutation in the family. Results: We sequenced full-length cDNA synthesized from leukocyte-derived RNA collected from the proband's sibling with thrombocytopenia, and detected a novel missense germline mutation in exon 4 at nucleotide position 371, causing a T to C mutation leading to a single amino acid change in the RUNX1 protein, L56S. This amino acid substitution is located N-terminal to the RHD (aa 76–209). RUNX1 sequencing of the proband with MDS demonstrated the same mutation. The RUNX1 RHD and the transactivation domain remain intact in this mutant. Initial transactivation assays using a luciferase reporter assay performed in triplicate demonstrated similar levels of activation as wild-type RUNX1. Corresponding Western blot analysis showed similar levels of protein expression of both wild-type RUNX1 and mutant RUNX1 transfected cell lines using an anti-RUNX1-antibody. Current studies include determination of the transactivation ability of mutant RUNX1 with its heterodimerization partner, CBFβ/PEBP2β, testing the DNA binding ability of this RUNX1 mutant by electrophoretic mobility shift assay, and analysis of the RUNX1 cDNA for an acquired biallelic mutation in leukocytes collected from the proband's bone marrow aspirate at the time of diagnosis of bone marrow malignancy. Conclusions: FPD/AML is likely an underreported condition. Clinical suspicion for this inherited syndrome may be raised by the presence of mild to moderate thrombocytopenia in healthy siblings, and should lead to prompt screening for germline RUNX1 mutations to confirm an inherited predisposition and to prevent siblings carrying RUNX1 mutations from being selected as HCT donors. In vitro studies of identified RUNX1 mutations may elucidate potential mechanisms involved in the pathogenesis of the FPD/AML syndrome. Disclosures: No relevant conflicts of interest to declare.


mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Yao Wang ◽  
Julie K. Pfeiffer

ABSTRACTCoxsackieviruses are enteric viruses that frequently infect humans. To examine coxsackievirus pathogenesis, we orally inoculated mice with the coxsackievirus B3 (CVB3) Nancy strain. Using HeLa cell plaque assays with agar overlays, we noticed that some fecal viruses generated plaques >100 times as large as inoculum viruses. These large-plaque variants emerged following viral replication in several different tissues. We identified a single amino acid change, N63Y, in the VP3 capsid protein that was sufficient to confer the large-plaque phenotype. Wild-type CVB3 and N63Y mutant CVB3 had similar plaque sizes when agarose was used in the overlay instead of agar. We determined that sulfated glycans in agar inhibited plaque formation by wild-type CVB3 but not by N63Y mutant CVB3. Furthermore, N63Y mutant CVB3 bound heparin, a sulfated glycan, less efficiently than wild-type CVB3 did. While N63Y mutant CVB3 had a growth defect in cultured cells and reduced attachment, it had enhanced replication and pathogenesis in mice. Infection with N63Y mutant CVB3 induced more severe hepatic damage than infection with wild-type CVB3, likely because N63Y mutant CVB3 disseminates more efficiently to the liver. Our data reinforce the idea that culture-adapted laboratory virus strains can have reduced fitnessin vivo. N63Y mutant CVB3 may be useful as a platform to understand viral adaptation and pathogenesis in animal studies.IMPORTANCECoxsackieviruses frequently infect humans, and although many infections are mild or asymptomatic, there can be severe outcomes, including heart inflammation. Most studies with coxsackieviruses and other viruses use laboratory-adapted viral strains because of their efficient replication in cell culture. We used a cell culture-adapted strain of CVB3, Nancy, to examine viral replication and pathogenesis in orally inoculated mice. We found that mice shed viruses distinct from input viruses because they formed extremely large plaques in cell culture. We identified a single mutation, VP3 N63Y, that was sufficient for large-plaque formation. N63Y mutant viruses have reduced glycan binding and replication in cell culture; however, they have enhanced replication and virulence in mice. We are now using N63Y mutant CVB3 as an improved system for viral pathogenesis studies.


1989 ◽  
Vol 9 (7) ◽  
pp. 2989-2999 ◽  
Author(s):  
H M Traglia ◽  
N S Atkinson ◽  
A K Hopper

The yeast gene RNA1 has been defined by the thermosensitive rna1-1 lesion. This lesion interferes with the processing and production of all major classes of RNA. Each class of RNA is affected at a distinct and presumably unrelated step. Furthermore, RNA does not appear to exit the nucleus. To investigate how the RNA1 gene product can pleiotropically affect disparate processes, we undertook a structural analysis of wild-type and mutant RNA1 genes. The wild-type gene was found to contain a 407-amino-acid open reading frame that encodes a hydrophilic protein. No clue regarding the function of the RNA1 protein was obtained by searching banks for similarity to other known gene products. Surprisingly, the rna1-1 lesion was found to code for two amino acid differences from wild type. We found that neither single-amino-acid change alone resulted in temperature sensitivity. The carboxy-terminal region of the RNA1 open reading frame contains a highly acidic domain extending from amino acids 334 to 400. We generated genomic deletions that removed C-terminal regions of this protein. Deletion of amino acids 397 to 407 did not appear to affect cell growth. Removal of amino acids 359 to 397, a region containing 24 acidic residues, caused temperature-sensitive growth. This allele, rna1-delta 359-397, defines a second conditional lesion of the RNA1 locus. We found that strains possessing the rna1-delta 359-397 allele did not show thermosensitive defects in pre-rRNA or pre-tRNA processing. Removal of amino acids 330 to 407 resulted in loss of viability.


Sign in / Sign up

Export Citation Format

Share Document