scholarly journals Leukocyte Immunoglobulin-Like Receptor 1-Expressing Human Natural Killer Cell Subsets Differentially Recognize Isolates of Human Cytomegalovirus through the Viral Major Histocompatibility Complex Class I Homolog UL18

2016 ◽  
Vol 90 (6) ◽  
pp. 3123-3137 ◽  
Author(s):  
Kevin C. Chen ◽  
Richard J. Stanton ◽  
Jareer J. Banat ◽  
Mark R. Wills

ABSTRACTImmune responses of natural killer (NK) cell are controlled by the balance between activating and inhibitory receptors, but the expression of these receptors varies between cells within an individual. Although NK cells are a component of the innate immune system, particular NK cell subsets expressing Ly49H are positively selected and increase in frequency in response to cytomegalovirus infection in mice. Recent evidence suggests that in humans certain NK subsets also have an increased frequency in the blood of human cytomegalovirus (HCMV)-infected individuals. However, whether these subsets differ in their capacity of direct control of HCMV-infected cells remains unclear. In this study, we developed a novelin vitroassay to assess whether human NK cell subsets have differential abilities to inhibit HCMV growth and dissemination. NK cells expressing or lacking NKG2C did not display any differences in controlling viral dissemination. However, whenin vitro-expanded NK cells were used, cells expressing or lacking the inhibitory receptor leukocyte immunoglobulin-like receptor 1 (LIR1) were differentially able to control dissemination. Surprisingly, the ability of LIR1+NK cells to control virus spread differed between HCMV viral strains, and this phenomenon was dependent on amino acid sequences within the viral ligand UL18. Together, the results here outline anin vitrotechnique to compare the long-term immune responses of different human NK cell subsets and suggest, for the first time, that phenotypically defined human NK cell subsets may differentially recognize HCMV infections.IMPORTANCEHCMV infection is ubiquitous in most populations; it is not cleared by the host after primary infection but persists for life. The innate and adaptive immune systems control the spread of virus, for which natural killer (NK) cells play a pivotal role. NK cells can respond to HCMV infection by rapid, short-term, nonspecific innate responses, but evidence from murine studies suggested that NK cells may display long-term, memory-like responses to murine cytomegalovirus infection. In this study, we developed a new assay that examines human NK cell subsets that have been suggested to play a long-term memory-like response to HCMV infection. We show that changes in an HCMV viral protein that interacts with an NK cell receptor can change the ability of NK cell subsets to control HCMV while the acquisition of another receptor has no effect on virus control.

Blood ◽  
2011 ◽  
Vol 118 (9) ◽  
pp. 2473-2482 ◽  
Author(s):  
Catharina H. M. J. Van Elssen ◽  
Joris Vanderlocht ◽  
Tammy Oth ◽  
Birgit L. M. G. Senden-Gijsbers ◽  
Wilfred T. V. Germeraad ◽  
...  

Abstract Among prostaglandins (PGs), PGE2 is abundantly expressed in various malignancies and is probably one of many factors promoting tumor growth by inhibiting tumor immune surveillance. In the current study, we report on a novel mechanism by which PGE2 inhibits in vitro natural killer–dendritic cell (NK-DC) crosstalk and thereby innate and adaptive immune responses via its effect on NK-DC crosstalk. The presence of PGE2 during IFN-γ/membrane fraction of Klebsiella pneumoniae DC maturation inhibits the production of chemokines (CCL5, CCL19, and CXCL10) and cytokines (IL-12 and IL-18), which is cAMP-dependent and imprinted during DC maturation. As a consequence, these DCs fail to attract NK cells and show a decreased capacity to trigger NK cell IFN-γ production, which in turn leads to reduced T-helper 1 polarization. In addition, the presence of PGE2 during DC maturation impairs DC-mediated augmentation of NK-cell cytotoxicity. Opposed to their inhibitory effects on peripheral blood–derived NK cells, PGE2 matured DCs induce IL-22 secretion of inflammation constraining NKp44+ NK cells present in mucosa-associated lymphoid tissue. The inhibition of NK-DC interaction is a novel regulatory property of PGE2 that is of possible relevance in dampening immune responses in vivo.


Blood ◽  
2005 ◽  
Vol 106 (1) ◽  
pp. 338-344 ◽  
Author(s):  
Christian Adam ◽  
Susan King ◽  
Thomas Allgeier ◽  
Heidi Braumüller ◽  
Carolin Lüking ◽  
...  

It is generally accepted that priming of antitumor CD8+ cytotoxic T lymphocytes (CTLs) needs help that can be provided by CD4+ T cells. We show that interactions between dendritic cells (DCs) and natural killer (NK) cells can bypass the T helper arm in CTL induction. Bone marrow–derived DCs caused rejection of the A20 lymphoma and induced tumor-specific long-term memory, although they were not loaded with tumor-derived antigen. Experiments using CD40- knock-out mice and cell depletion showed that this effect did not require CD4+ cells. Both primary rejection and long-term CTL memory were the result of NK cell activation by DCs. NK cytotoxicity, which was necessary for primary rejection, was dependent on expression of natural killer group 2 D (NKG2D) ligands on tumor cells. Blocking of these ligands using NKG2D tetramers abrogated tumor killing in vitro and in vivo. The long-term response was due to CTLs directed against antigen(s) expressed on A20 and in vitro–differentiated DCs. The mechanism leading to CD4+ helper cell–independent CTL responses was elucidated as a cascade that was initiated by NK cell activation. This pathway was dependent on inter-feron-γ expression and involved priming endogenous DCs for interleukin-12 production. Our data suggest a novel pathway linking innate and adaptive immunity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Giorgio Santoni ◽  
Consuelo Amantini ◽  
Matteo Santoni ◽  
Federica Maggi ◽  
Maria Beatrice Morelli ◽  
...  

Natural killer (NK) cells are a main subset of innate lymphocytes that contribute to host immune protection against viruses and tumors by mediating target cell killing and secreting a wide array of cytokines. Their functions are finely regulated by a balance between activating and inhibitory receptors and involve also adhesive interactions. Mechanotransduction is the process in which physical forces sensed by mechanosensors are translated into chemical signaling. Herein, we report findings on the involvement of this mechanism that is mainly mediated by actin cytoskeleton, in the regulation of NK cell adhesion, migration, tissue infiltration and functions. Actin represents the structural basis for NK cell immunological synapse (NKIS) and polarization of secretory apparatus. NK-target cell interaction involves the formation of both uropods and membrane nanotubes that allow target cell interaction over long distances. Actin retrograde flow (ARF) regulates NK cell signaling and controls the equilibrium between activation versus inhibition. Activating NKIS is associated with rapid lamellipodial ARF, whereas lower centripetal actin flow is present during inhibitory NKIS where β actin can associate with the tyrosine phosphatase SHP-1. Overall, a better knowledge of mechanotransduction might represent a future challenge: Realization of nanomaterials tailored for NK cells, would be important to translate in vitro studies in in vivo new immunotherapeutic approaches.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii194-ii195
Author(s):  
Nazanin Majd ◽  
Maha Rizk ◽  
Solveig Ericson ◽  
Kris Grzegorzewski ◽  
Sharmila Koppisetti ◽  
...  

Abstract Glioblastoma (GBM) is the most aggressive primary brain tumor with dismal prognosis. Recent advances of immunotherapy in cancer have sparked interest in the use of cell therapy for treatment of GBM. Active transfer of Natural Killer (NK) cells is of particular interest in GBM because NK cells are capable of exerting anti-tumor cytotoxicity without the need for antigen presentation and sensitization, processes that are impaired in GBM. CYNK-001 is an allogeneic, off-the-shelf product enriched for CD56+/CD3- NK cells expanded from placental CD34+ cells manufactured by Celularity. Here, we demonstrate in vitro cytotoxicity of CYNK-001 against several GBM lines and its in vivo anti-tumor activity in a U87MG orthotopic mouse model via intracranial administration resulting in 94.5% maximum reduction in tumor volume. We have developed a phase I window-of-opportunity trial of CYNK-001 in recurrent GBM via intravenous (IV) and intratumoral (IT) routes. In the IV cohort, subjects receive cyclophosphamide for lymphodepletion followed by 3-doses of IV CYNK-001 weekly. In the IT cohort, subjects undergo placement of an IT catheter with an ommaya reservoir followed by 3-doses of IT CYNK-001 weekly. Patients are monitored for 28-days after last infusion for toxicity. Once maximum safe dose (MSD) is determined, patients undergo IV or IT treatments at MSD followed by surgical resection and the tumor tissue will be analyzed for NK cell engraftment and persistence. We will utilize a 3 + 3 dose de-escalation design (maximum n=36). Primary endpoint is safety and feasibility. Secondary endpoints are overall response rate, duration of response, time to progression, progression free survival and overall survival. Main eligibility criteria include age ≥18, KPS ≥60, GBM at first or second relapse with a measurable lesion on ≤2mg dexamethasone. This is the first clinical trial to investigate CYNK-001 in GBM and will lay the foundation for future NK cell therapy in solid tumors.


Blood ◽  
2009 ◽  
Vol 114 (19) ◽  
pp. 4081-4088 ◽  
Author(s):  
Ting Zhang ◽  
Shuxun Liu ◽  
Pengyuan Yang ◽  
Chaofeng Han ◽  
Jianli Wang ◽  
...  

Abstract Tissue microenvironment and stroma-derived extracellular matrix (ECM) molecules play important roles in the survival and differentiation of cells. Mouse natural killer (NK) cells usually die within 24 hours once isolated ex vivo. Exogenous cytokines such as interleukin-12 (IL-12) and IL-15 are required to maintain the survival and activity of mouse NK cells cultured in vitro. Whether and how ECM molecules such as fibronectin can support the survival of NK cells remain unknown. We demonstrate that fibronectin, just like IL-15, can maintain survival of mouse NK cells in vitro. Furthermore, we show that fibronectin binds to the CD11b on NK cells, and then CD11b recruits and activates Src. Src can directly interact with β-catenin and trigger nuclear translocation of β-catenin. The activation of β-catenin promotes extracellular signal-related kinase (ERK) phosphorylation, resulting in the increased expression of antiapoptotic protein B-cell leukemia 2 (Bcl-2), which may contribute to the maintenance of NK-cell survival. Consistently, fibronectin cannot maintain the survival of CD11b− NK cells and β-catenin–deficient NK cells in vitro, and the number of NK cells is dramatically decreased in the β-catenin–deficient mice. Therefore, fibronectin can maintain survival of mouse NK cells by activating ERK and up-regulating Bcl-2 expression via CD11b/Src/β-catenin pathway.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi101-vi102
Author(s):  
Amber Kerstetter-Fogle ◽  
Folashade Otegbeye ◽  
David Soler ◽  
Peggy Harris ◽  
Alankrita Raghavan ◽  
...  

Abstract INTRODUCTION Glioblastoma multiforme (GBM) is the most common primary central nervous system malignancy associated with a 12-15 month survival after surgery and radio-chemotherapy. Utilizing adoptive cellular immunotherapy using natural killer (NK) cells has developed over the past two decades for a variety of hematologic malignancies. This approach in solid malignancies is limited by questions of cell dose versus tumor burden, insufficient tumor infiltration, and a tumor microenvironment that suppresses NK cell function. METHODS We isolated NK cells from healthy volunteers and activated them using IL-2, -15, -12, -18, then perform cytotoxic assays in the presence of glioma stem cells. We also tested the efficacy of the NK cells with intracranial delivery in a pre-clinical murine model of glioma. We tested various concentrations of IL-2 and IL-15 on the cytokine culture platform. RESULTS In this study, we demonstrate human NK cells, activated using a cytokine cocktail of interleukins-2, -15, -12, and -18, exert strong cytotoxic events against glioma cell lines. To further examine the efficacy of activated NK cells in vitro, we utilized intracranially xenografted glioma lines and demonstrated a survival benefit with tumor bed injections of these cytokine-activated NK cells (p=0.0089). We were able to confirm that NK cells cultured with low doses (200u IL2; 50ng/ml IL15) of both cytokines are just as effective as higher doses. This is important, as in vivoexhaustion of NK cells stimulated with high doses of either cytokine has been well validated. We also found that low-dose irradiation (4Gy) of glioma cells prior to co-culture with cytokine-activated NK cells promoted increased targeted glioma cell killing within 4 hours(32% cell killing). CONCLUSIONS These findings suggest that in a clinical study, injection of cytokine-activated NK cells into the glioblastoma tumor bed could be used as adjuvant treatment following either stereotactic radiation or surgical resection.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3583
Author(s):  
Stefania Mantovani ◽  
Stefania Varchetta ◽  
Dalila Mele ◽  
Matteo Donadon ◽  
Guido Torzilli ◽  
...  

Natural killer (NK) cells play a pivotal role in cancer immune surveillance, and activating the receptor/ligand interaction may contribute to control the development and evolution of hepatocellular carcinoma (HCC). We investigated the role of the natural killer group 2 member D (NKG2D) activating receptor and its ligand, the major histocompatibility complex class I chain-related protein A and B (MICA/B) in patients with cirrhosis and HCC subjected to surgical resection, patients with cirrhosis and no HCC, and healthy donors (HD). The NKG2D-mediated function was determined in peripheral blood (PB), in tumor-infiltrating lymphocytes (NK-TIL), and in matched surrounding liver tissue (NK-LIL). A group of patients treated with sorafenib because of clinically advanced HCC was also studied. A humanized anti-MICA/B monoclonal antibody (mAb) was used in in vitro experiments to examine NK cell-mediated antibody-dependent cellular cytotoxicity. Serum concentrations of soluble MICA/B were evaluated by ELISA. IL-15 stimulation increased NKG2D-dependent activity which, however, remained dysfunctional in PB NK cells from HCC patients, in line with the reduced NKG2D expression on NK cells. NK-TIL showed a lower degranulation ability than NK-LIL, which was restored by IL-15 stimulation. Moreover, in vitro IL-15 stimulation enhanced degranulation and interferon-γ production by PB NK from patients at month one of treatment with sorafenib. Anti-MICA/B mAb associated with IL-15 was able to induce PB NK cytotoxicity for primary HCC cells in HD and patients with HCC, who also showed NK-TIL degranulation for autologous primary HCC cells. Our findings highlight the key role of the NKG2D-MICA/B axis in the regulation of NK cell responses in HCC and provide evidence in support of a potentially important role of anti-MICA/B mAb and IL-15 stimulation in HCC immunotherapy.


Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 841-846 ◽  
Author(s):  
MR Silva ◽  
R Hoffman ◽  
EF Srour ◽  
JL Ascensao

Abstract Human natural killer (NK) cells comprise 10% to 15% of peripheral blood mononuclear cells and have an important role in immune responses against tumors, viral infections, and graft rejection. NK cells originate in bone marrow (BM), but their progenitors and lineage development have not been completely characterized. We studied the generation of NK cells from purified CD34+HLADR- and CD34+HLADR+ BM progenitors and the influence of various cytokines on their production. We show that CD3-CD56+ cytotoxic NK cells can develop from both progenitors populations when interleukin-2 (IL-2) is present in an in vitro suspension culture system containing IL-1 alpha and stem cell factor. Up to 83.8% and 98.6% CD3-CD56+ cells were detected in CD34+HLADR- and CD34+DR+ cultures, respectively, after 5 weeks of culture; significant numbers of NK cells were first detected after 2 weeks. Cytotoxic activity paralleled NK cell numbers; up to 70% specific lysis at an effector:target ratio of 10:1 was observed at 5 weeks. IL-7 also triggered development of CD3-CD56+ cells from these immature progenitors (up to 24% and 55% appeared in CD34+HLADR- and CD34+HLADR+ cultures, respectively). Our data suggest that BM stromas are not necessary for NK cell development and that IL-2 remains essential for this lineage development and differentiation.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1975 ◽  
Author(s):  
Daria Bortolotti ◽  
Valentina Gentili ◽  
Sabrina Rizzo ◽  
Antonella Rotola ◽  
Roberta Rizzo

Natural killer cells are important in the control of viral infections. However, the role of NK cells during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has previously not been identified. Peripheral blood NK cells from SARS-CoV and SARS-CoV-2 naïve subjects were evaluated for their activation, degranulation, and interferon-gamma expression in the presence of SARS-CoV and SARS-CoV-2 spike proteins. K562 and lung epithelial cells were transfected with spike proteins and co-cultured with NK cells. The analysis was performed by flow cytometry and immune fluorescence. SARS-CoV and SARS-CoV-2 spike proteins did not alter NK cell activation in a K562 in vitro model. On the contrary, SARS-CoV-2 spike 1 protein (SP1) intracellular expression by lung epithelial cells resulted in NK cell-reduced degranulation. Further experiments revealed a concomitant induction of HLA-E expression on the surface of lung epithelial cells and the recognition of an SP1-derived HLA-E-binding peptide. Simultaneously, there was increased modulation of the inhibitory receptor NKG2A/CD94 on NK cells when SP1 was expressed in lung epithelial cells. We ruled out the GATA3 transcription factor as being responsible for HLA-E increased levels and HLA-E/NKG2A interaction as implicated in NK cell exhaustion. We show for the first time that NK cells are affected by SP1 expression in lung epithelial cells via HLA-E/NKG2A interaction. The resulting NK cells’ exhaustion might contribute to immunopathogenesis in SARS-CoV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document