scholarly journals The central hydrophobic domain of the bovine papillomavirus E5 transforming protein can be functionally replaced by many hydrophobic amino acid sequences containing a glutamine.

1992 ◽  
Vol 66 (1) ◽  
pp. 505-511 ◽  
Author(s):  
R Kulke ◽  
B H Horwitz ◽  
T Zibello ◽  
D DiMaio
1993 ◽  
Vol 90 (23) ◽  
pp. 11282-11286 ◽  
Author(s):  
K Uéda ◽  
H Fukushima ◽  
E Masliah ◽  
Y Xia ◽  
A Iwai ◽  
...  

A neuropathological hallmark of Alzheimer disease (AD) is a widespread amyloid deposition. We analyzed the entire amino acid sequences in an amyloid preparation and found, in addition to the major beta/A4-protein (A beta) fragment, two unknown peptides. We raised antibodies against synthetic peptides using subsequences of these peptides. These antibodies immunostained amyloid in neuritic and diffuse plaques as well as vascular amyloid. Electron microscopic analysis demonstrated that the immunostaining was localized on amyloid fibrils. We have isolated an apparently full-length cDNA encoding a 140-amino-acid protein within which two previously unreported amyloid sequences are encoded in tandem in the most hydrophobic domain. We tentatively named this 35-amino acid peptide NAC (non-A beta component of AD amyloid) and its precursor NACP. NAC is the second component, after A beta, identified chemically in the purified AD amyloid preparation. Secondary structure predictions indicate that the NAC peptide sequence has a strong tendency to form beta-structures consistent with its association with amyloid. NACP is detected as a M(r) 19,000 protein in the cytosolic fraction of brain homogenates and comigrates on immunoblots with NACP synthesized in Escherichia coli from NACP cDNA. NACP mRNA is expressed principally in brain but is also expressed in low concentrations in all tissues examined except in liver, suggesting its ubiquitous and brain-specific functions. The availability of the cDNA encoding full-length NACP should help to elucidate the mechanisms of amyloidosis in AD.


1979 ◽  
Vol 179 (2) ◽  
pp. 379-395 ◽  
Author(s):  
D C Macnair ◽  
A J Kenny

Dipeptidyl peptidase IV was solubilized from the microvillar membrane of pig kidney by Triton X-100. The purified enzyme was homogeneous on polyacrylamide-gel electrophoresis and ultracentrifugation, although immunoelectrophoresis indicated that amino-peptidase M was a minor contaminant. A comparison of the detergent-solubilized and proteinase (autolysis)-solubilized forms of the enzyme was undertaken to elucidate the structure and function of the hydrophobic domain that serves to anchor the protein to the membrane. No differences in catalytic properties, nor in sensitivity to inhibition by di-isopropyl phosphorofluoridate were found. On the other hand, several structural differences could be demonstrated. Both forms were about 130,000 subunit mol.wt., but the detergent form appeared to be larger by no more than about 4,000. Electron microscopy showed both forms to be dimers, and gel filtration revealed a difference in the dimeric mol.wt. of about 38 000, mainly attributable to detergent molecules bound to the hydrophobic domain. Papain converted the detergent form into a hydrophilic form that could not be distinguished in properties from the autolysis form. A hydrophobic peptide of about 3500 mol.wt. was identified as a product of papain treatment. The detergent and proteinase forms differed in primary structure. Partial N-terminal amino acid sequences were shown to be different, and the pattern of release of amino acids from the C-terminus by carboxypeptidase Y was essentially similar. The results are consistent with a model in which the protein is anchored to the microvillar membrane by a small hydrophobic domain located within the N-terminal amino acid sequence of the polypeptide chain. The significance of these results in relation to biosynthesis of the enzyme and assembly in the membrane is discussed.


1986 ◽  
Vol 6 (5) ◽  
pp. 1478-1486
Author(s):  
W S Neckameyer ◽  
M Shibuya ◽  
M T Hsu ◽  
L H Wang

A recombinant DNA clone containing cellular sequences homologous to the transforming sequence, v-ros, of avian sarcoma virus UR2 was isolated from a chicken genomic DNA library. Heteroduplex mapping and nucleotide sequencing reveal that the v-ros sequences are distributed in nine exons ranging from 65 to 204 nucleotides on cellular ros (c-ros) DNA over a range of 11 kilobases. Comparison of the deduced amino acid sequences of c-ros and v-ros shows two differences: v-ros contains a three-amino-acid insertion within the hydrophobic domain presumed to be involved in membrane association, and (ii) the carboxyl 12 amino acids of v-ros are completely different from those of the deduced c-ros sequence. The deduced amino acid sequence of c-ros bears striking structural features similar to those of insulin and epidermal growth factor receptors, including the presumed hydrophobic membrane binding domain, amino acids flanking the domain, and the distance between the domain and the catalytic region of the kinase activity. The expression of c-ros appears to be under a very stringent control. When tissues at various stages of chicken development were analyzed, only kidney was found to contain a significant level of c-ros RNA. The level of c-ros RNA in kidney tissue is most abundant in 7- to 14-day-old chickens. Finally, nucleotide sequences of c-ros DNA and UR2-associated helper viral genome at regions corresponding to the gag ros recombination site suggest that the junction has been formed by RNA splicing.


1986 ◽  
Vol 6 (5) ◽  
pp. 1478-1486 ◽  
Author(s):  
W S Neckameyer ◽  
M Shibuya ◽  
M T Hsu ◽  
L H Wang

A recombinant DNA clone containing cellular sequences homologous to the transforming sequence, v-ros, of avian sarcoma virus UR2 was isolated from a chicken genomic DNA library. Heteroduplex mapping and nucleotide sequencing reveal that the v-ros sequences are distributed in nine exons ranging from 65 to 204 nucleotides on cellular ros (c-ros) DNA over a range of 11 kilobases. Comparison of the deduced amino acid sequences of c-ros and v-ros shows two differences: v-ros contains a three-amino-acid insertion within the hydrophobic domain presumed to be involved in membrane association, and (ii) the carboxyl 12 amino acids of v-ros are completely different from those of the deduced c-ros sequence. The deduced amino acid sequence of c-ros bears striking structural features similar to those of insulin and epidermal growth factor receptors, including the presumed hydrophobic membrane binding domain, amino acids flanking the domain, and the distance between the domain and the catalytic region of the kinase activity. The expression of c-ros appears to be under a very stringent control. When tissues at various stages of chicken development were analyzed, only kidney was found to contain a significant level of c-ros RNA. The level of c-ros RNA in kidney tissue is most abundant in 7- to 14-day-old chickens. Finally, nucleotide sequences of c-ros DNA and UR2-associated helper viral genome at regions corresponding to the gag ros recombination site suggest that the junction has been formed by RNA splicing.


1993 ◽  
Vol 69 (04) ◽  
pp. 351-360 ◽  
Author(s):  
Masahiro Murakawa ◽  
Takashi Okamura ◽  
Takumi Kamura ◽  
Tsunefumi Shibuya ◽  
Mine Harada ◽  
...  

SummaryThe partial amino acid sequences of fibrinogen Aα-chains from five mammalian species have been inferred by means of the polymerase chain reaction (PCR). From the genomic DNA of the rhesus monkey, pig, dog, mouse and Syrian hamster, the DNA fragments coding for α-C domains in the Aα-chains were amplified and sequenced. In all species examined, four cysteine residues were always conserved at the homologous positions. The carboxy- and amino-terminal portions of the α-C domains showed a considerable homology among the species. However, the sizes of the middle portions, which corresponded to the internal repeat structures, showed an apparent variability because of several insertions and/or deletions. In the rhesus monkey, pig, mouse and Syrian hamster, 13 amino acid tandem repeats fundamentally similar to those in humans and the rat were identified. In the dog, however, tandem repeats were found to consist of 18 amino acids, suggesting an independent multiplication of the canine repeats. The sites of the α-chain cross-linking acceptor and α2-plasmin inhibitor cross-linking donor were not always evolutionally conserved. The arginyl-glycyl-aspartic acid (RGD) sequence was not found in the amplified region of either the rhesus monkey or the pig. In the canine α-C domain, two RGD sequences were identified at the homologous positions to both rat and human RGD S. In the Syrian hamster, a single RGD sequence was found at the same position to that of the rat. Triplication of the RGD sequences was seen in the murine fibrinogen α-C domain around the homologous site to the rat RGDS sequence. These findings are of some interest from the point of view of structure-function and evolutionary relationships in the mammalian fibrinogen Aα-chains.


1979 ◽  
Author(s):  
Takashi Morita ◽  
Craig Jackson

Bovine Factor X is eluted in two forms (X1and X2) from anion exchange chromatographic columns. These two forms have indistinguishable amino acid compositions, molecular weights and specific activities. The amino acid sequences containing the γ-carboxyglutamic acid residues have been shown to be identical in X1 and X2(H. Morris, personal communication). An activation peptide is released from the N-terminal region of the heavy chain of Factor X by an activator from Russell’s viper venom. This peptide can be isolated after activation by gel filtration on Sephadex G-100 under nondenaturing conditions. The activation peptides from a mixture of Factors X1 and X2 were separated into two forms by anion-exchange chromatography. The activation peptide (AP1) which eluted first was shown to be derived from Factor X1. while the activation peptiae (AP2) which eluted second was shown to be derived from X2 on the basis of chromatographic separations carried out on Factors X1 and X2 separately. Factor Xa was eluted as a symmetrical single peak. On the basis of these and other data characterizing these products, we conclude that the difference between X1 and X2 are properties of the structures of the activation peptides. (Supported by a grant HL 12820 from the National Heart, Lung and Blood Institute. C.M.J. is an Established Investigator of the American Heart Association).


2020 ◽  
Vol 44 (3) ◽  
pp. 177-189
Author(s):  
Momir Dunjic ◽  
Stefano Turini ◽  
Dejan Krstic ◽  
Katarina Dunjic ◽  
Marija Dunjic ◽  
...  

Radiofrequency therapy is an unconventional method, already applied for some time, with numerous results in numerous clinical pictures. Our group has developed a software, later called SONGENPROT-SOLARIS, capable of directly converting nucleotide sequences (DNA and/or RNA) and amino acid sequences (polypeptides and proteins) into musical sequences, based on mathematic matrices, designed by the French physicist and musician Joel Sternheimer, which allows to associate a musical note with a nucleotide or an amino acid. Innovation in our software is that, in the algorithm that defines it, a variant is directly implemented that allows the reproduction of sounds, phase-shifted by 30 Hz, between one ear and another reproducing the phenomenon of Binaural Tones, capable of induce a specific brain activity and also the release of particles called solitons. Thanks to this software we have developed a technique called MMT (Molecular Music Therapy) and currently, we are in the phase of applying the technique on a cohort of 91 patients, with a high spectrum of clinical pictures, examining the same, using the technique Bi-Digital-ORing-Test (BDORT), before and after treatment with MMT. Aim of project is to stimulate the expression of a specific gene (the same genetic sequence that the patient listens to, translated into music), only through the use of sound sequences. We have concentrated our attention on three main molecules: Sirtuin-1, Telomers and TP-53. The results obtained with BDORT, after treatment with MMT, showed a significant increase in the values of the three molecules, on all the examined patients, demonstrating the operative efficacy of the technique and the its applicability to numerous diseases. In order to confirm the data obtained by BDORT, we propose, with the help of an accredited laboratory, to perform epigenetic tests on the three parameters listed above, paving the way to understanding how frequencies can influence gene expression.


2019 ◽  
Vol 26 (7) ◽  
pp. 542-549 ◽  
Author(s):  
Shan Shan Hao ◽  
Man Man Zong ◽  
Ze Zhang ◽  
Jia Xi Cai ◽  
Yang Zheng ◽  
...  

Background: Bursa of Fabricius is the acknowledged central humoral immune organ. The bursal-derived peptides play the important roles on the immature B cell development and antibody production. Objective: Here we explored the functions of the new isolated bursal hexapeptide and pentapeptide on the humoral, cellular immune response and antigen presentation to Avian Influenza Virus (AIV) vaccine in mice immunization. Methods: The bursa extract samples were purified following RP HPLC method, and were analyzed with MS/MS to identify the amino acid sequences. Mice were twice subcutaneously injected with AIV inactivated vaccine plus with two new isolated bursal peptides at three dosages, respectively. On two weeks after the second immunization, sera samples were collected from the immunized mice to measure AIV-specific IgG antibody levels and HI antibody titers. Also, on 7th day after the second immunization, lymphocytes were isolated from the immunized mice to detect T cell subtype and lymphocyte viabilities, and the expressions of co-stimulatory molecule on dendritic cells in the immunized mice. Results: Two new bursal hexapeptide and pentapeptide with amino acid sequences KGNRVY and MPPTH were isolated, respectively. Our investigation proved the strong regulatory roles of bursal hexapeptide on AIV-specific IgG levels and HI antibody titers, and lymphocyte viabilities, and the significant increased T cells subpopulation and expressions of MHCII molecule on dendritic cells in the immunized mice. Moreover, our findings verified the significantly enhanced AIV-specific IgG antibody and HI titers, and the strong increased T cell subpopulation and expressions of CD40 molecule on dendritic cells in the mice immunized with AIV vaccine and bursal pentapeptide. Conclusion: We isolated and identified two new hexapeptide and pentapeptide from bursa, and proved that these two bursal peptides effectively induced the AIV-specific antibody, T cell and antigen presentation immune responses, which provided an experimental basis for the further clinical application of the bursal derived active peptide on the vaccine improvement.


2019 ◽  
Vol 20 (4) ◽  
pp. 309-316 ◽  
Author(s):  
Pritam Chattopadhyay ◽  
Goutam Banerjee

Background: Several strains of Klebsiella pneumoniae are responsible for causing pneumonia in lung and thereby causing death in immune-suppressed patients. In recent year, few investigations have reported the enhancement of K. pneumoniae population in patients using corticosteroid containing inhaler. Objectives: The biological mechanism(s) behind this increased incidence has not been elucidated. Therefore, the objective of this investigating was to explore the relation between Klebsiella pneumoniae and increment in carbapenamase producing Enterobacteriaceae score (ICS). Methods: The available genomes of K. pneumoniae and the amino acid sequences of steroid catabolism pathway enzymes were taken from NCBI database and KEGG pathway tagged with UniPort database, respectively. We have used different BLAST algorithms (tBLASTn, BLASTp, psiBLAST, and delBLAST) to identify enzymes (by their amino acid sequence) involved in steroid catabolism. Results: A total of 13 enzymes (taken from different bacterial candidates) responsible for corticosteroid degradation have been identified in the genome of K. pneumoniae. Finally, 8 enzymes (K. pneumoniae specific) were detected in four clinical strains of K. pneumoniae. This investigation intimates that this ability to catabolize corticosteroids could potentially be one mechanism behind the increased pneumonia incidence. Conclusion: The presence of corticosteroid catabolism enzymes in K. pneumoniae enhances the ability to utilize corticosteroid for their own nutrition source. This is the first report to demonstrate the corticosteroid degradation pathway in clinical strains of K. pneumoniae.


Sign in / Sign up

Export Citation Format

Share Document