scholarly journals Measles Virus Spread by Cell-Cell Contacts: Uncoupling of Contact-Mediated Receptor (CD46) Downregulation from Virus Uptake

1999 ◽  
Vol 73 (7) ◽  
pp. 5265-5273 ◽  
Author(s):  
Ruth Firsching ◽  
Christian J. Buchholz ◽  
Urs Schneider ◽  
Roberto Cattaneo ◽  
Volker ter Meulen ◽  
...  

ABSTRACT CD46, which serves as a receptor for measles virus (MV; strain Edmonston), is rapidly downregulated from the cell surface after contact with viral particles or infected cells. We show here that the same two CD46 complement control protein (CCP) domains responsible for primary MV attachment mediate its downregulation. Optimal downregulation efficiency was obtained with CD46 recombinants containing CCP domains 1 and 2, whereas CCP 1, alone and duplicated, induced a slight downregulation. Using persistently infected monocytic/promyelocytic U937 cells which release very small amounts of infectious virus, and uninfected HeLa cells as contact partners, we then showed that during contact the formation of CD46-containing patches and caps precedes CD46 internalization. Nevertheless, neither substances inhibiting capping nor the fusion-inhibiting peptide Z-d-Phe-l-Phe-Gly-OH (FIP) blocked CD46 downregulation. Thus, CD46 downregulation can be uncoupled from fusion and subsequent virus uptake. Interestingly, in that system cell-cell contacts lead to a remarkably efficient infection of the target cells which is only partially inhibited by FIP. The finding that the contact of an infected with uninfected cells results in transfer of infectious viral material without significant (complete) fusion of the donor with the recipient cell suggests that microfusion events and/or FIP-independent mechanisms may mediate the transfer of MV infectivity from cell to cell.

1999 ◽  
Vol 73 (12) ◽  
pp. 10556-10556
Author(s):  
Ruth firsching ◽  
christian j. buchholz ◽  
urs schneider ◽  
roberto cattaneo ◽  
volker ter meulen ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jafar Rezaie ◽  
Cynthia Aslan ◽  
Mahdi Ahmadi ◽  
Naime Majidi Zolbanin ◽  
Fatah Kashanchi ◽  
...  

AbstractEukaryotic cells produce extracellular vesicles (EVs) mediating intercellular communication. These vesicles encompass many bio-molecules such as proteins, nucleic acids, and lipids that are transported between cells and regulate pathophysiological actions in the recipient cell. Exosomes originate from multivesicular bodies inside cells and microvesicles shed from the plasma membrane and participate in various pathological conditions. Retroviruses such as Human Immunodeficiency Virus -type 1 (HIV-1) and Human T-cell leukemia virus (HTLV)-1 engage exosomes for spreading and infection. Exosomes from virus-infected cells transfer viral components such as miRNAs and proteins that promote infection and inflammation. Additionally, these exosomes deliver virus receptors to target cells that make them susceptible to virus entry. HIV-1 infected cells release exosomes that contribute to the pathogenesis including neurological disorders and malignancy. Exosomes can also potentially carry out as a modern approach for the development of HIV-1 and HTLV-1 vaccines. Furthermore, as exosomes are present in most biological fluids, they hold the supreme capacity for clinical usage in the early diagnosis and prognosis of viral infection and associated diseases. Our current knowledge of exosomes' role from virus-infected cells may provide an avenue for efficient retroviruses associated with disease prevention. However, the exact mechanism involved in retroviruses infection/ inflammation remains elusive and related exosomes research will shed light on the mechanisms of pathogenesis.


2020 ◽  
Vol 21 (24) ◽  
pp. 9644
Author(s):  
Héloïse Leroy ◽  
Mingyu Han ◽  
Marie Woottum ◽  
Lucie Bracq ◽  
Jérôme Bouchet ◽  
...  

Cell-cell fusion between eukaryotic cells is a general process involved in many physiological and pathological conditions, including infections by bacteria, parasites, and viruses. As obligate intracellular pathogens, viruses use intracellular machineries and pathways for efficient replication in their host target cells. Interestingly, certain viruses, and, more especially, enveloped viruses belonging to different viral families and including human pathogens, can mediate cell-cell fusion between infected cells and neighboring non-infected cells. Depending of the cellular environment and tissue organization, this virus-mediated cell-cell fusion leads to the merge of membrane and cytoplasm contents and formation of multinucleated cells, also called syncytia, that can express high amount of viral antigens in tissues and organs of infected hosts. This ability of some viruses to trigger cell-cell fusion between infected cells as virus-donor cells and surrounding non-infected target cells is mainly related to virus-encoded fusion proteins, known as viral fusogens displaying high fusogenic properties, and expressed at the cell surface of the virus-donor cells. Virus-induced cell-cell fusion is then mediated by interactions of these viral fusion proteins with surface molecules or receptors involved in virus entry and expressed on neighboring non-infected cells. Thus, the goal of this review is to give an overview of the different animal virus families, with a more special focus on human pathogens, that can trigger cell-cell fusion.


2000 ◽  
Vol 74 (16) ◽  
pp. 7548-7553 ◽  
Author(s):  
Armin Weidmann ◽  
Christian Fischer ◽  
Shinji Ohgimoto ◽  
Claudia Rüth ◽  
Volker ter Meulen ◽  
...  

ABSTRACT Expression of the measles virus (MV) F/H complex on the surface of viral particles, infected cells, or cells transfected to express these proteins (presenter cells [PC]) is necessary and sufficient to induce proliferative arrest in both human and rodent lymphoid cells (responder cells [RC]). This inhibition was found to occur independent of apoptosis and soluble mediators excluded by a pore size filter of 200 nm released from either PC or RC. We now show that reactive oxygen intermediates which might be released by RC or PC also do not contribute to MV-induced immunosuppression in vitro. Using an inhibitor of Golgi-resident mannosidases (deoxymannojirimycin), we found that complex glycosylation of the F and H proteins is not required for the induction of proliferative arrest of RC. As revealed by our previous studies, proteolytic cleavage of the MV F protein precursor into its F1 and F2 subunits, but not of F/H-mediated cellular fusion, was found to be required, since fusion-inhibitory peptides such as Z-d-Phe-l-Phe-Gly (Z-fFG) did not interfere with the induction of proliferative inhibition. We now show that Z-fFG inhibits cellular fusion at the stage of hemifusion by preventing lipid mixing of the outer membrane layer. These results provide strong evidence for a receptor-mediated signal elicited by the MV F/H complex which can be uncoupled from its fusogenic activity is required for the induction of proliferative arrest of human lymphocytes.


2008 ◽  
Vol 83 (1) ◽  
pp. 228-240 ◽  
Author(s):  
Barbara Berarducci ◽  
Jaya Rajamani ◽  
Mike Reichelt ◽  
Marvin Sommer ◽  
Leigh Zerboni ◽  
...  

ABSTRACT Varicella-zoster virus (VZV) glycoprotein E (gE) is the most abundant glycoprotein in infected cells and, in contrast to those of other alphaherpesviruses, is essential for viral replication. The gE ectodomain contains a unique N-terminal region required for viral replication, cell-cell spread, and secondary envelopment; this region also binds to the insulin-degrading enzyme (IDE), a proposed VZV receptor. To identify new functional domains of the gE ectodomain, the effect of mutagenesis of the first cysteine-rich region of the gE ectodomain (amino acids 208 to 236) was assessed using VZV cosmids. Deletion of this region was compatible with VZV replication in vitro, but cell-cell spread of the rOka-ΔCys mutant was reduced significantly. Deletion of the cysteine-rich region abolished the binding of the mutant gE to gI but not to IDE. Preventing gE binding to gI altered the pattern of gE expression at the plasma membrane of infected cells and the posttranslational maturation of gI and its incorporation into viral particles. In contrast, deletion of the first cysteine-rich region did not affect viral entry into human tonsil T cells in vitro or into melanoma cells infected with cell-free VZV. These experiments demonstrate that gE/gI heterodimer formation is essential for efficient cell-cell spread and incorporation of gI into viral particles but that it is dispensable for infectious varicella-zoster virion formation and entry into target cells. Blocking gE binding to gI resulted in severe impairment of VZV infection of human skin xenografts in SCIDhu mice in vivo, documenting the importance of cell fusion mediated by this complex for VZV virulence in skin.


2004 ◽  
Vol 85 (6) ◽  
pp. 1665-1673 ◽  
Author(s):  
Patricia Devaux ◽  
Dale Christiansen ◽  
Sébastien Plumet ◽  
Denis Gerlier

Measles virus (MV)-infected cells are activators of the alternative human complement pathway, resulting in high deposition of C3b on the cell surface. Activation was observed independent of whether CD46 was used as a cellular receptor and did not correlate with CD46 down-regulation. The virus itself was an activator of the alternative pathway and was covered by C3b/C3bi, resulting in some loss in infectivity without loss of virus binding to target cells. The cell surface expression of MV fusion (F), but not haemagglutinin, envelope protein resulted in complement activation of the Factor B-dependent alternative pathway in a dose-dependent manner and F–C3b complexes were formed. The underlying activation mechanism was not related to any decrease in cell surface expression of the complement regulators CD46 and CD55. The C3b/C3bi coating of MV-infected cells and virus should ensure enhanced targeting of MV antigens to the immune system, through binding to complement receptors.


2019 ◽  
Vol 94 (2) ◽  
Author(s):  
Yuta Shirogane ◽  
Takao Hashiguchi ◽  
Yusuke Yanagi

ABSTRACT Measles virus (MeV) is an enveloped RNA virus bearing two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. Upon receptor binding, the H protein triggers conformational changes of the F protein, causing membrane fusion and subsequent virus entry. MeV may persist in the brain, infecting neurons and causing fatal subacute sclerosing panencephalitis (SSPE). Since neurons do not express either of the MeV receptors, signaling lymphocytic activation molecule (SLAM; also called CD150) and nectin-4, how MeV propagates in neurons is unknown. Recent studies have shown that specific substitutions in the F protein found in MeV isolates from SSPE patients are critical for MeV neuropathogenicity by rendering the protein unstable and hyperfusogenic. Recombinant MeVs possessing the F proteins with such substitutions can spread in primary human neurons and in the brains of mice and hamsters and induce cell-cell fusion in cells lacking SLAM and nectin-4. Here, we show that receptor-blind mutant H proteins that have decreased binding affinities to receptors can support membrane fusion mediated by hyperfusogenic mutant F proteins, but not the wild-type F protein, in cells expressing the corresponding receptors. The results suggest that weak interactions of the H protein with certain molecules (putative neuron receptors) trigger hyperfusogenic F proteins in SSPE patients. Notably, where cell-cell contacts are ensured, the weak cis interaction of the H protein with SLAM on the same cell surface also could trigger hyperfusogenic F proteins. Some enveloped viruses may exploit such cis interactions with receptors to infect target cells, especially in cell-to-cell transmission. IMPORTANCE Measles virus (MeV) may persist in the brain, causing incurable subacute sclerosing panencephalitis (SSPE). Because neurons, the main target in SSPE, do not express receptors for wild-type (WT) MeV, how MeV propagates in the brain is a key question for the disease. Recent studies have demonstrated that specific substitutions in the MeV fusion (F) protein are critical for neuropathogenicity. Here, we show that weak cis and trans interactions of the MeV attachment protein with receptors that are not sufficient to trigger the WT MeV F protein can trigger the mutant F proteins from neuropathogenic MeV isolates. Our study not only provides an important clue to understand MeV neuropathogenicity but also reveals a novel viral strategy to expand cell tropism.


2014 ◽  
Vol 89 (1) ◽  
pp. 14-24 ◽  
Author(s):  
Elisabetta Groppelli ◽  
Shimona Starling ◽  
Clare Jolly

ABSTRACTRapid HIV-1 spread between CD4 T lymphocytes occurs at retrovirus-induced immune cell contacts called virological synapses (VS). VS are associated with striking T cell polarization and localized virus budding at the site of contact that facilitates cell-cell spread. In addition to this, spatial clustering of organelles, including mitochondria, to the contact zone has been previously shown. However, whether cell-cell contact specifically induces dynamic T cell remodeling during VS formation and what regulates this process remain unclear. Here, we report that contact between an HIV-1-infected T cell and an uninfected target T cell specifically triggers polarization of mitochondria concomitant with recruitment of the major HIV-1 structural protein Gag to the site of cell-cell contact. Using fixed and live-cell imaging, we show that mitochondrial and Gag polarization in HIV-1-infected T cells occurs within minutes of contact with target T cells, requires the formation of stable cell-cell contacts, and is an active, calcium-dependent process. We also find that perturbation of mitochondrial polarization impairs cell-cell spread of HIV-1 at the VS. Taken together, these data suggest that HIV-1-infected T cells are able to sense and respond to contact with susceptible target cells and undergo dynamic cytoplasmic remodeling to create a synaptic environment that supports efficient HIV-1 VS formation between CD4 T lymphocytes.IMPORTANCEHIV-1 remains one of the major global health challenges of modern times. The capacity of HIV-1 to cause disease depends on the virus's ability to spread between immune cells, most notably CD4 T lymphocytes. Cell-cell transmission is the most efficient way of HIV-1 spread and occurs at the virological synapse (VS). The VS forms at the site of contact between an infected cell and an uninfected cell and is characterized by polarized assembly and budding of virions and clustering of cellular organelles, including mitochondria. Here, we show that cell-cell contact induces rapid recruitment of mitochondria to the contact site and that this supports efficient VS formation and consequently cell-cell spread. Additionally, we observed that cell-cell contact induces a mitochondrion-dependent increase in intracellular calcium, indicative of cellular signaling. Taken together, our data suggest that VS formation is a regulated process and thus a potential target to block HIV-1 cell-cell spread.


2016 ◽  
Author(s):  
Clari Valansi ◽  
David Moi ◽  
Evgenia Leikina ◽  
Elena Matveev ◽  
Martín Graña ◽  
...  

AbstractCell-cell fusion is inherent to any form of sexual reproduction. Loss of HAPLESS 2/GENERATIVE CELL SPECIFIC 1 (HAP2/GCS1) proteins results in gamete fusion failure in different organisms but their exact role is unclear. Here we show that Arabidopsis HAP2/GCS1 expression in mammalian cells is sufficient to promote cell-cell fusion. Hemifusion and complete fusion depend on HAP2/GCS1 presence in both fusing cells. Furthermore, expression of HAP2 on the surface of pseudotyped vesicular stomatitis virus and on the target cells results in HAP2-dependent virus-cell fusion. This bilateral requirement can be bypassed by replacing the plant gene with C. elegans EFF-1 somatic cell fusogen in one of the fusing cells or the virus, indicating that HAP2/GCS1 and EFF-1 share a similar fusion mechanism. Structural modeling of the HAP2/GCS1 protein family predicts that they are homologous to EFF-1 and class II fusion proteins from enveloped viruses (e.g. dengue and Zika viruses). We name this superfamily FUSEXINS: FUSion proteins essential for sexual reproduction and EXoplasmic merger of plasma membranes. Thus, Fusexins unify the origin and evolution of sexual reproduction, enveloped virus entry into cells and somatic cell fusion.


Sign in / Sign up

Export Citation Format

Share Document