scholarly journals Cyclic Diguanylate Signaling Proteins Control Intracellular Growth of Legionella pneumophila

mBio ◽  
2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Assaf Levi ◽  
Marc Folcher ◽  
Urs Jenal ◽  
Howard A. Shuman

ABSTRACTProteins that metabolize or bind the nucleotide second messenger cyclic diguanylate regulate a wide variety of important processes in bacteria. These processes include motility, biofilm formation, cell division, differentiation, and virulence. The role of cyclic diguanylate signaling in the lifestyle ofLegionella pneumophila, the causative agent of Legionnaires’ disease, has not previously been examined. TheL. pneumophilagenome encodes 22 predicted proteins containing domains related to cyclic diguanylate synthesis, hydrolysis, and recognition. We refer to these genes ascdgS(cyclicdiguanylatesignaling) genes. Strains ofL. pneumophilacontaining deletions of all individualcdgSgenes were created and did not exhibit any observable growth defect in growth medium or inside host cells. However, when overexpressed, severalcdgSgenes strongly decreased the ability ofL. pneumophilato grow inside host cells. Expression of thesecdgSgenes did not affect the Dot/Icm type IVB secretion system, the major determinant of intracellular growth inL. pneumophila.L. pneumophilastrains overexpressing thesecdgSgenes were less cytotoxic to THP-1 macrophages than wild-typeL. pneumophilabut retained the ability to resist grazing by amoebae. In many cases, the intracellular-growth inhibition caused bycdgSgene overexpression was independent of diguanylate cyclase or phosphodiesterase activities. Expression of thecdgSgenes in aSalmonella entericaserovar Enteritidis strain that lacks all diguanylate cyclase activity indicated that severalcdgSgenes encode potential cyclases. These results indicate that components of the cyclic diguanylate signaling pathway play an important role in regulating the ability ofL. pneumophilato grow in host cells.IMPORTANCEAll bacteria must sense and respond to environmental cues. Intracellular bacterial pathogens must detect and respond to host functions that limit their ability to carry out a successful infection. Small-molecule second messengers play key roles in transmitting signals from environmental receptors to the proteins and other components that respond to signals. Cyclic diguanylate is a ubiquitous bacterial second messenger known to play an important role in many sensing and signaling systems in bacteria. The causative agent of Legionnaires’ disease,Legionella pneumophila, is an intracellular pathogen that grows inside environmental protists and human macrophages by subverting the normal processes that these cells use to capture and destroy bacteria. We show that the several cyclic diguanylate signaling components inLegionellaplay a role in the ability to grow inside both kinds of host cells. This work highlights the role of cyclic diguanylate signaling during intracellular growth.

mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Ashley Best ◽  
Yousef Abu Kwaik

ABSTRACTWithin the human host,Legionella pneumophilareplicates within alveolar macrophages, leading to pneumonia. However,L. pneumophilais an aquatic generalist pathogen that replicates within a wide variety of protist hosts, including amoebozoa, percolozoa, and ciliophora. The intracellular lifestyles ofL. pneumophilawithin the two evolutionarily distant hosts macrophages and protists are remarkably similar. Coevolution with numerous protist hosts has shaped plasticity of the genome ofL. pneumophila, which harbors numerous proteins encoded by genes acquired from primitive eukaryotic hosts through interkingdom horizontal gene transfer. The Dot/Icm type IVb translocation system translocates ∼6,000 effectors amongLegionellaspecies and >320 effector proteins inL. pneumophilainto host cells to modulate a plethora of cellular processes to create proliferative niches. Since many of the effectors have likely evolved to modulate cellular processes of primitive eukaryotic hosts, it is not surprising that most of the effectors do not contribute to intracellular growth within human macrophages. Some of the effectors may modulate highly conserved eukaryotic processes, while others may target protist-specific processes that are absent in mammals. The lack of studies to determine the role of the effectors in adaptation ofL. pneumophilato various protists has hampered the progress to determine the function of most of these effectors, which are routinely studied in mouse or human macrophages. Since many protists restrictL. pneumophila, utilization of such hosts can also be instrumental in deciphering the mechanisms of failure ofL. pneumophilato overcome restriction of certain protist hosts. Here, we review the interaction ofL. pneumophilawith its permissive and restrictive protist environmental hosts and outline the accomplishments as well as gaps in our knowledge ofL. pneumophila-protist host interaction andL. pneumophila’s evolution to become a human pathogen.


2016 ◽  
Vol 82 (16) ◽  
pp. 5000-5014 ◽  
Author(s):  
Christian Manske ◽  
Ursula Schell ◽  
Hubert Hilbi

ABSTRACTLegionella pneumophilais a natural parasite of environmental amoebae and the causative agent of a severe pneumonia termed Legionnaires' disease. The facultative intracellular pathogen employs a bipartite metabolism, where the amino acid serine serves as the major energy supply, while glycerol and glucose are mainly utilized for anabolic processes. TheL. pneumophilagenome harbors the clusterlpg1653tolpg1649putatively involved in the metabolism of the abundant carbohydratemyo-inositol (here termed inositol). To assess inositol metabolism byL. pneumophila, we constructed defined mutant strains lackinglpg1653orlpg1652, which are predicted to encode the inositol transporter IolT or the inositol-2-dehydrogenase IolG, respectively. The mutant strains were not impaired for growth in complex or defined minimal media, and inositol did not promote extracellular growth. However, upon coinfection ofAcanthamoeba castellanii, the mutants were outcompeted by the parental strain, indicating that the intracellular inositol metabolism confers a fitness advantage to the pathogen. Indeed, inositol added toL. pneumophila-infected amoebae or macrophages promoted intracellular growth of the parental strain, but not of the ΔiolTor ΔiolGmutant, and growth stimulation by inositol was restored by complementation of the mutant strains. The expression of the Piolpromoter and bacterial uptake of inositol required the alternative sigma factor RpoS, a key virulence regulator ofL. pneumophila. Finally, the parental strain and ΔiolGmutant bacteria but not the ΔiolTmutant strain accumulated [U-14C6]inositol, indicating that IolT indeed functions as an inositol transporter. Taken together, intracellularL. pneumophilametabolizes inositol through theiolgene products, thus promoting the growth and virulence of the pathogen.IMPORTANCEThe environmental bacteriumLegionella pneumophilais the causative agent of a severe pneumonia termed Legionnaires' disease. The opportunistic pathogen replicates in protozoan and mammalian phagocytes in a unique vacuole. Amino acids are thought to represent the prime source of carbon and energy forL. pneumophila. However, genome, transcriptome, and proteome studies indicate that the pathogen not only utilizes amino acids as carbon sources but possesses broader metabolic capacities. In this study, we analyzed the metabolism of inositol by extra- and intracellularly growingL. pneumophila. By using genetic, biochemical, and cell biological approaches, we found thatL. pneumophilaaccumulates and metabolizes inositol through theiolgene products, thus promoting the intracellular growth, virulence, and fitness of the pathogen. Our study significantly contributes to an understanding of the intracellular niche of a human pathogen.


2001 ◽  
Vol 69 (4) ◽  
pp. 2116-2122 ◽  
Author(s):  
Claudia Dietrich ◽  
Klaus Heuner ◽  
Bettina C. Brand ◽  
Jörg Hacker ◽  
Michael Steinert

ABSTRACT Legionella pneumophila, the etiologic agent of Legionnaires' disease, contains a single, monopolar flagellum which is composed of one major subunit, the FlaA protein. To evaluate the role of the flagellum in the pathogenesis and ecology ofLegionella, the flaA gene of L. pneumophila Corby was mutagenized by introduction of a kanamycin resistance cassette. Immunoblots with antiflagellin-specific polyclonal antiserum, electron microscopy, and motility assays confirmed that the specific flagellar mutant L. pneumophila Corby KH3 was nonflagellated. The redelivery of the intact flaA gene into the chromosome (L. pneumophila Corby CD10) completely restored flagellation and motility. Coculture studies showed that the invasion efficiency of the flaA mutant was moderately reduced in amoebae and severely reduced in HL-60 cells. In contrast, adhesion and the intracellular rate of replication remained unaffected. Taking these results together, we have demonstrated that the flagellum of L. pneumophila positively affects the establishment of infection by facilitating the encounter of the host cell as well as by enhancing the invasion capacity.


2001 ◽  
Vol 69 (1) ◽  
pp. 508-517 ◽  
Author(s):  
Suat L. G. Cirillo ◽  
Luiz E. Bermudez ◽  
Sahar H. El-Etr ◽  
Gerald E. Duhamel ◽  
Jeffrey D. Cirillo

ABSTRACT Successful parasitism of host cells by intracellular pathogens involves adherence, entry, survival, intracellular replication, and cell-to-cell spread. Our laboratory has been examining the role of early events, adherence and entry, in the pathogenesis of the facultative intracellular pathogen Legionella pneumophila. Currently, the mechanisms used by L. pneumophila to gain access to the intracellular environment are not well understood. We have recently isolated three loci, designated enh1,enh2, and enh3, that are involved in the ability of L. pneumophila to enter host cells. One of the genes present in the enh1 locus, rtxA, is homologous to repeats in structural toxin genes (RTX) found in many bacterial pathogens. RTX proteins from other bacterial species are commonly cytotoxic, and some of them have been shown to bind to β2 integrin receptors. In the current study, we demonstrate that the L. pneumophila rtxA gene is involved in adherence, cytotoxicity, and pore formation in addition to its role in entry. Furthermore, an rtxA mutant does not replicate as well as wild-type L. pneumophila in monocytes and is less virulent in mice. Thus, we conclude that the entry genertxA is an important virulence determinant in L. pneumophila and is likely to be critical for the production of Legionnaires' disease in humans.


mBio ◽  
2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Nathan Feirer ◽  
Jing Xu ◽  
Kylie D. Allen ◽  
Benjamin J. Koestler ◽  
Eric L. Bruger ◽  
...  

ABSTRACTThe motile-to-sessile transition is an important lifestyle switch in diverse bacteria and is often regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). In general, high c-di-GMP concentrations promote attachment to surfaces, whereas cells with low levels of signal remain motile. In the plant pathogenAgrobacterium tumefaciens, c-di-GMP controls attachment and biofilm formation via regulation of a unipolar polysaccharide (UPP) adhesin. The levels of c-di-GMP inA. tumefaciensare controlled in part by the dual-function diguanylate cyclase-phosphodiesterase (DGC-PDE) protein DcpA. In this study, we report that DcpA possesses both c-di-GMP synthesizing and degrading activities in heterologous and native genetic backgrounds, a binary capability that is unusual among GGDEF-EAL domain-containing proteins. DcpA activity is modulated by a pteridine reductase called PruA, with DcpA acting as a PDE in the presence of PruA and a DGC in its absence. PruA enzymatic activity is required for the control of DcpA and through this control, attachment and biofilm formation. Intracellular pterin analysis demonstrates that PruA is responsible for the production of a novel pterin species. In addition, the control of DcpA activity also requires PruR, a protein encoded directly upstream of DcpA with a predicted molybdopterin-binding domain. PruR is hypothesized to be a potential signaling intermediate between PruA and DcpA through an as-yet-unidentified mechanism. This study provides the first prokaryotic example of a pterin-mediated signaling pathway and a new model for the regulation of dual-function DGC-PDE proteins.IMPORTANCEPathogenic bacteria often attach to surfaces and form multicellular communities called biofilms. Biofilms are inherently resilient and can be difficult to treat, resisting common antimicrobials. Understanding how bacterial cells transition to the biofilm lifestyle is essential in developing new therapeutic strategies. We have characterized a novel signaling pathway that plays a dominant role in the regulation of biofilm formation in the model pathogenAgrobacterium tumefaciens. This control pathway involves small metabolites called pterins, well studied in eukaryotes, but this is the first example of pterin-dependent signaling in bacteria. The described pathway controls levels of an important intracellular second messenger (cyclic diguanylate monophosphate) that regulates key bacterial processes such as biofilm formation, motility, and virulence. Pterins control the balance of activity for an enzyme that both synthesizes and degrades the second messenger. These findings reveal a complex, multistep pathway that modulates this enzyme, possibly identifying new targets for antibacterial intervention.


2016 ◽  
Vol 84 (12) ◽  
pp. 3458-3470 ◽  
Author(s):  
Mike Khan ◽  
Jerome S. Harms ◽  
Fernanda M. Marim ◽  
Leah Armon ◽  
Cherisse L. Hall ◽  
...  

Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host- Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a Δ bpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the Δ bpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase Δ cgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, Δ bpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection.


2014 ◽  
Vol 197 (3) ◽  
pp. 563-571 ◽  
Author(s):  
Fabien Fuche ◽  
Anne Vianney ◽  
Claire Andrea ◽  
Patricia Doublet ◽  
Christophe Gilbert

Legionella pneumophilais a Gram-negative pathogen found mainly in water, either in a free-living form or within infected protozoans, where it replicates. This bacterium can also infect humans by inhalation of contaminated aerosols, causing a severe form of pneumonia called legionellosis or Legionnaires' disease. The involvement of type II and IV secretion systems in the virulence ofL. pneumophilais now well documented. Despite bioinformatic studies showing that a type I secretion system (T1SS) could be present in this pathogen, the functionality of this system based on the LssB, LssD, and TolC proteins has never been established. Here, we report the demonstration of the functionality of the T1SS, as well as its role in the infectious cycle ofL. pneumophila. Using deletion mutants and fusion proteins, we demonstrated that therepeats-in-toxin protein RtxA is secreted through an LssB-LssD-TolC-dependent mechanism. Moreover, fluorescence monitoring and confocal microscopy showed that this T1SS is required for entry into the host cell, although it seems dispensable to the intracellular cycle. Together, these results underline the active participation ofL. pneumophila, via its T1SS, in its internalization into host cells.


2012 ◽  
Vol 78 (15) ◽  
pp. 5457-5459 ◽  
Author(s):  
Molly C. Sutherland ◽  
Joseph P. Vogel

ABSTRACTResearch onLegionella pneumophila, the causative agent of Legionnaires' disease, has been hampered due to the lack of selectable markers for genetic manipulation. We report the construction of a mutant strain ofL. pneumophilalackingloxA, a chromosomally encoded β-lactamase, that has enhanced sensitivity to ampicillin. Also described are a method for convertingLegionellastrains to ampicillin sensitivity and conditions for utilizingblaas a selectable marker.


2016 ◽  
Vol 199 (5) ◽  
Author(s):  
Jennifer R. Tanner ◽  
Palak G. Patel ◽  
Jacqueline R. Hellinga ◽  
Lynda J. Donald ◽  
Celine Jimenez ◽  
...  

ABSTRACT Nominally an environmental organism, Legionella pneumophila is an intracellular parasite of protozoa but is also the causative agent of the pneumonia termed Legionnaires' disease, which results from inhalation of aerosolized bacteria by susceptible humans. Coordination of gene expression by a number of identified regulatory factors, including OxyR, assists L. pneumophila in adapting to the stresses of changing environments. L. pneumophila OxyR (OxyRLp) is an ortholog of Escherichia coli OxyR; however, OxyRLp was shown elsewhere to be functionally divergent, such that it acts as a transcription regulator independently of the oxidative stress response. In this study, the use of improved gene deletion methods has enabled us to generate an unmarked in-frame deletion of oxyR in L. pneumophila. Lack of OxyRLp did not affect in vitro growth or intracellular growth in Acanthamoeba castellanii protozoa and U937-derived macrophages. The expression of OxyRLp does not appear to be regulated by CpxR, even though purified recombinant CpxR bound a DNA sequence similar to that reported for CpxR elsewhere. Surprisingly, a lack of OxyRLp resulted in elevated activity of the promoters located upstream of icmR and the lpg1441-cpxA operon, and OxyRLp directly bound to these promoter regions, suggesting that OxyRLp is a direct repressor. Interestingly, a strain overexpressing OxyRLp demonstrated reduced intracellular growth in A. castellanii but not in U937-derived macrophages, suggesting that balanced expression control of the two-component CpxRA system is necessary for survival in protozoa. Taken together, this study suggests that OxyRLp is a functionally redundant transcriptional regulator in L. pneumophila under the conditions evaluated herein. IMPORTANCE Legionella pneumophila is an environmental pathogen, with its transmission to the human host dependent upon its ability to replicate in protozoa and survive within its aquatic niche. Understanding the genetic factors that contribute to L. pneumophila survival within each of these unique environments will be key to limiting future point-source outbreaks of Legionnaires' disease. The transcriptional regulator L. pneumophila OxyR (OxyRLp) has been previously identified as a potential regulator of virulence traits warranting further investigation. This study demonstrated that oxyR is nonessential for L. pneumophila survival in vitro and in vivo via mutational analysis. While the mechanisms of how OxyRLp expression is regulated remain elusive, this study shows that OxyRLp negatively regulates the expression of the cpxRA two-component system necessary for intracellular survival in protozoa.


2010 ◽  
Vol 192 (17) ◽  
pp. 4504-4516 ◽  
Author(s):  
Galadriel Hovel-Miner ◽  
Sebastien P. Faucher ◽  
Xavier Charpentier ◽  
Howard A. Shuman

ABSTRACT Legionella pneumophila is an intracellular pathogen that infects protozoa in aquatic environments and when inhaled by susceptible human hosts replicates in alveolar macrophages and can result in the often fatal pneumonia called Legionnaires' disease. The ability of L. pneumophila to replicate within host cells requires the establishment of a specialized compartment that evades normal phagolysosome fusion called the Legionella-containing vacuole (LCV). Elucidation of the biochemical composition of the LCV and the identification of the regulatory signals sensed during intracellular replication are inherently challenging. l-Arginine is a critical nutrient in the metabolism of both prokaryotic and eukaryotic organisms. We showed that the L. pneumophila arginine repressor homolog, ArgR, is required for maximal intracellular growth in the unicellular host Acanthamoeba castellanii. In this study, we present evidence that the concentration of l-arginine in the LCV is sensed by ArgR to produce an intracellular transcriptional response. We characterized the L. pneumophila ArgR regulon by global gene expression analysis, identified genes highly affected by ArgR, showed that ArgR repression is dependent upon the presence of l-arginine, and demonstrated that ArgR-regulated genes are derepressed during intracellular growth. Additional targets of ArgR that may account for the argR mutant's intracellular multiplication defect are discussed. These results suggest that l-arginine availability functions as a regulatory signal during Legionella intracellular growth.


Sign in / Sign up

Export Citation Format

Share Document