scholarly journals Energy Taxis toward Host-Derived Nitrate Supports a Salmonella Pathogenicity Island 1-Independent Mechanism of Invasion

mBio ◽  
2016 ◽  
Vol 7 (4) ◽  
Author(s):  
Fabian Rivera-Chávez ◽  
Christopher A. Lopez ◽  
Lillian F. Zhang ◽  
Lucía García-Pastor ◽  
Alfredo Chávez-Arroyo ◽  
...  

ABSTRACT Salmonella enterica serovar Typhimurium can cross the epithelial barrier using either the invasion-associated type III secretion system (T3SS-1) or a T3SS-1-independent mechanism that remains poorly characterized. Here we show that flagellum-mediated motility supported a T3SS-1-independent pathway for entering ileal Peyer’s patches in the mouse model. Flagellum-dependent invasion of Peyer’s patches required energy taxis toward nitrate, which was mediated by the methyl-accepting chemotaxis protein (MCP) Tsr. Generation of nitrate in the intestinal lumen required inducible nitric oxide synthase (iNOS), which was synthesized constitutively in the mucosa of the terminal ileum but not in the jejunum, duodenum, or cecum. Tsr-mediated invasion of ileal Peyer’s patches was abrogated in mice deficient for Nos2 , the gene encoding iNOS. We conclude that Tsr-mediated energy taxis enables S . Typhimurium to migrate toward the intestinal epithelium by sensing host-derived nitrate, thereby contributing to invasion of Peyer’s patches. IMPORTANCE Nontyphoidal Salmonella serovars, such as S. enterica serovar Typhimurium, are a common cause of gastroenteritis in immunocompetent individuals but can also cause bacteremia in immunocompromised individuals. While the invasion-associated type III secretion system (T3SS-1) is important for entry, S . Typhimurium strains lacking a functional T3SS-1 can still cross the intestinal epithelium and cause a disseminated lethal infection in mice. Here we observed that flagellum-mediated motility and chemotaxis contributed to a T3SS-1-independent pathway for invasion and systemic dissemination to the spleen. This pathway required the methyl-accepting chemotaxis protein (MCP) Tsr and energy taxis toward host-derived nitrate, which we found to be generated by inducible nitric oxide synthase (iNOS) in the ileal mucosa prior to infection. Collectively, our data suggest that S . Typhimurium enhances invasion by actively migrating toward the intestinal epithelium along a gradient of host-derived nitrate emanating from the mucosal surface of the ileum.

2008 ◽  
Vol 190 (13) ◽  
pp. 4624-4631 ◽  
Author(s):  
Hideaki Mizusaki ◽  
Akiko Takaya ◽  
Tomoko Yamamoto ◽  
Shin-Ichi Aizawa

ABSTRACT Salmonella enterica serovar Typhimurium secretes virulence factors for invasion called Sip proteins or Sips into its hosts through a type III secretion system (T3SS). In the absence of a host, S. enterica induces Sip secretion in response to sucrose or simple salts, such as NaCl. We analyzed induction of host-independent Sip secretion by monitoring protein secretion by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), assembly of needle complexes by electron microscopy, and transcription of virulence regulatory genes by quantitative reverse transcriptase PCR (real-time PCR). SDS-PAGE showed that addition of sucrose or simple salts, such as NaCl, to the growth medium induced Sip secretion without altering flagellar protein secretion, which requires a distinct T3SS. Electron microscopy confirmed that the amount of secreted Sips increased as the number of assembled needle complexes increased. Real-time PCR revealed that added sucrose or NaCl enhanced transcription of hilA, hilC, and hilD, which encode known regulators of Salmonella virulence. However, epistasis analysis implicated HilD and HilA, but not HilC, in the direct pathway from the salt stimulus to the Sip secretion response. Further analyses showed that the BarA/SirA two-component signal transduction pathway, but not the two-component sensor kinase EnvZ, directly activated hilD and hilA transcription and thus Sip secretion in response to either sucrose or NaCl. Finally, real-time PCR showed that salt does not influence transcription of the BarA/SirA-dependent csrB and csrC genes. A model is proposed for the major pathway in which sucrose or salt signals to enhance virulence gene expression.


Author(s):  
Marie Wrande ◽  
Kim Vestö ◽  
Speranta Puiac Banesaru ◽  
Naeem Anwar ◽  
Johan Nordfjell ◽  
...  

Salmonella infection associates with tissue hypoxia, while inducible nitric oxide synthase (iNOS), relying for its activity on molecular oxygen, stands as a central host defence measure in murine salmonellosis. Here, we have detailed hypoxia and iNOS responses of murine macrophage-like RAW264.7 cells upon infection with Salmonella enterica serovar Typhimurium. We noted that only a proportion of the infected RAW264.7 cells became hypoxic or expressed iNOS. Heavily infected cells became hypoxic, while in parallel such cells tended not to express iNOS. While a proportion of the infected RAW264.7 cells revealed shutdown of protein synthesis, this was only detectable after 12 h post infection and after iNOS expression was induced in the cell culture. Our data implicate an intrinsic heterogeneity with regard to hypoxia and iNOS expression in a cell culture-based infection setting.


2003 ◽  
Vol 71 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Hidenori Matsui ◽  
Masato Suzuki ◽  
Yasunori Isshiki ◽  
Chie Kodama ◽  
Masahiro Eguchi ◽  
...  

ABSTRACT We evaluated the efficacy of mutants with a deletion of the stress response protease gene as candidates for live oral vaccine strains against Salmonella infection through infection studies with mice by using a Salmonella enterica serovar Typhimurium mutant with a disruption of the ClpXP or Lon protease. In vitro, the ClpXP protease regulates flagellum synthesis and the ClpXP-deficient mutant strain exhibits hyperflagellated bacterial cells (T. Tomoyasu et al., J. Bacteriol. 184:645-653, 2002). On the other hand, the Lon protease negatively regulates the efficacy of invading epithelial cells and the expression of invasion genes (A. Takaya et al., J. Bacteriol. 184:224-232, 2002). When 5-week-old BALB/c mice were orally administered 5 × 108 CFU of the ClpXP- or Lon-deficient strain, bacteria were detected with 103 to 104 CFU in the spleen, mesenteric lymph nodes, Peyer's patches, and cecum 1 week after inoculation and the bacteria then decreased gradually in each tissue. Significant increases of lipopolysaccharide-specific immunoglobulin G (IgG) and secretory IgA were detected at week 4 and maintained until at least week 12 after inoculation in serum and bile, respectively. Immunization with the ClpXP- or Lon-deficient strain protected mice against oral challenge with the serovar Typhimurium virulent strain. Both the challenged virulent and immunized avirulent salmonellae were completely cleared from the spleen, mesenteric lymph nodes, Peyer's patches, and even cecum 5 days after the challenge. These data indicate that Salmonella with a disruption of the ATP-dependent protease ClpXP or Lon can be useful in developing a live vaccine strain.


2009 ◽  
Vol 77 (9) ◽  
pp. 3569-3577 ◽  
Author(s):  
Mrutyunjay Suar ◽  
Balamurugan Periaswamy ◽  
Pascal Songhet ◽  
Benjamin Misselwitz ◽  
Andreas Müller ◽  
...  

ABSTRACT Salmonella enterica subsp. I serovars Typhimurium and Enteritidis are major causes of enteric disease. The pathomechanism of enteric infection by serovar Typhimurium has been studied in detail. Serovar Typhimurium employs two pathways in parallel for triggering disease, i.e., the “classical” pathway, triggered by type III secretion system 1 (TTSS-1), and the “alternative” pathway, mediated by TTSS-2. It had remained unclear whether these two pathways would also explain the enteropathogenesis of strains from other serovars. We chose the isolate P125109 of the epidemic serovar Enteritidis PT4/6, generated isogenic mutants, and studied their virulence. Using in vitro and in vivo infection experiments, a dendritic cell depletion strategy, and MyD88−/− knockout mice, we found that P125109 employs both the “classical” and “alternative” pathways for triggering mucosal inflammation. The “classical” pathway was phenotypically similar in serovar Typhimurium strain SL1344 and in P125109. However, the kinetics of the “alternative” pathway differed significantly. Via TTSS-2, P125109 colonized the gut tissue more efficiently and triggered mucosal inflammation approximately 1 day faster than SL1344 did. In conclusion, our data demonstrate that different Salmonella spp. can differ in their capacity to trigger mucosal inflammation via the “alternative” pathway in vivo.


2000 ◽  
Vol 68 (5) ◽  
pp. 2735-2743 ◽  
Author(s):  
Katrin Eichelberg ◽  
Jorge E. Galán

ABSTRACT One of the essential features of all pathogenic strains ofSalmonella enterica is the ability to enter into nonphagocytic cells. This pathogenic property is mediated by theSalmonella pathogenicity island 1 (SPI-1)-encoded type III secretion system. Expression of components and substrates of this system is subject to complex regulatory mechanisms. These mechanisms include a number of specific and global transcriptional regulatory proteins. In this study we have compared in S. entericaserovars Typhimurium and Typhi the effect of mutations in flagellar genes on the phenotypes associated with the SPI-1 type III protein secretion system. We found that serovar Typhi strains carrying a null mutation in either of the flagellar regulatory genes flhDCor fliA were severely deficient in entry into cultured epithelial cells and macrophage cytotoxicity. This defect could not be reversed by applying a mild centrifugal force, suggesting that the effects of the mutations were not due to the absence of motility. In contrast, the same mutations had no significant effect on the ability of serovar Typhimurium to enter into cultured Henle-407 cells or to induce macrophage cell death. Consistent with these observations, we found that the mutations in the flagellar regulatory proteins significantly reduced the expression of components of the SPI-1-encoded type III system in serovar Typhi but had a marginal effect in serovar Typhimurium. Our results therefore indicate that there is an overlap between regulatory mechanisms that control flagellar and type III secretion gene expression inSalmonella serovar Typhi.


2013 ◽  
Vol 57 (5) ◽  
pp. 2191-2198 ◽  
Author(s):  
Jianfang Li ◽  
Chao Lv ◽  
Weiyang Sun ◽  
Zhenyu Li ◽  
Xiaowei Han ◽  
...  

ABSTRACTBacterial virulence factors have been increasingly regarded as attractive targets for development of novel antibacterial agents. Virulence inhibitors are less likely to generate bacterial resistance, which makes them superior to traditional antibiotics that target bacterial viability.Salmonella entericaserovar Typhimurium, an important food-borne human pathogen, has type III secretion system (T3SS) as its major virulence factor. T3SS secretes effector proteins to facilitate invasion into host cells. In this study, we identified several analogs of cytosporone B (Csn-B) that strongly block the secretion ofSalmonellapathogenicity island 1 (SPI-1)-associated effector proteins, without affecting the secretion of flagellar protein FliCin vitro. Csn-B and two other derivatives exhibited a strong inhibitory effect on SPI-1-mediated invasion to HeLa cells, while no significant toxicity to bacteria was observed. Nucleoid proteins Hha and H-NS bind to the promoters of SPI-1 regulator geneshilD,hilC, andrtsAto repress their expression and consequently regulate the expression of SPI-1 apparatus and effector genes. We found that Csn-B upregulated the transcription ofhhaandhns, implying that Csn-B probably affected the secretion of effectors through the Hha–H-NS regulatory pathway. In summary, this study presented an effective SPI-1 inhibitor, Csn-B, which may have potential in drug development against antibiotic-resistantSalmonella.


Sign in / Sign up

Export Citation Format

Share Document