scholarly journals Comparative Genomic Analysis of Globally Dominant ST131 Clone with Other Epidemiologically Successful Extraintestinal PathogenicEscherichia coli(ExPEC) Lineages

mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Sabiha Shaik ◽  
Amit Ranjan ◽  
Sumeet K. Tiwari ◽  
Arif Hussain ◽  
Nishant Nandanwar ◽  
...  

ABSTRACTEscherichia colisequence type 131 (ST131), a pandemic clone responsible for the high incidence of extraintestinal pathogenicE. coli(ExPEC) infections, has been known widely for its contribution to the worldwide dissemination of multidrug resistance. Although other ExPEC-associated and extended-spectrum-β-lactamase (ESBL)-producingE. coliclones, such as ST38, ST405, and ST648 have been studied widely, no comparative genomic data with respect to other genotypes exist for ST131. In this study, comparative genomic analysis was performed for 99 ST131E. colistrains with 40 genomes from three other STs, including ST38 (n =12), ST405 (n =10), and ST648 (n =18), and functional studies were performed on five in-house strains corresponding to the four STs. Phylogenomic analysis results from this study corroborated with the sequence type-specific clonality. Results from the genome-wide resistance profiling confirmed that all strains were inherently multidrug resistant. ST131 genomes showed unique virulence profiles, and analysis of mobile genetic elements and their associated methyltransferases (MTases) has revealed that several of them were missing from the majority of the non-ST131 strains. Despite the fact that non-ST131 strains lacked few essential genes belonging to the serum resistome, the in-house strains representing all four STs demonstrated similar resistance levels to serum antibactericidal activity. Core genome analysis data revealed that non-ST131 strains usually lacked several ST131-defined genomic coordinates, and a significant number of genes were missing from the core of the ST131 genomes. Data from this study reinforce adaptive diversification ofE. colistrains belonging to the ST131 lineage and provide new insights into the molecular mechanisms underlying clonal diversification of the ST131 lineage.IMPORTANCEE. coli, particularly the ST131 extraintestinal pathogenicE. coli(ExPEC) lineage, is an important cause of community- and hospital-acquired infections, such as urinary tract infections, surgical site infections, bloodstream infections, and sepsis. The treatment of infections caused by ExPEC has become very challenging due to the emergence of resistance to the first-line as well as the last-resort antibiotics. This study analyzesE. coliST131 against three other important and globally distributed ExPEC lineages (ST38, ST405, and ST648) that also produced extended-spectrum β-lactamase (ESBL). This is perhaps the first study that employs the high-throughput whole-genome sequence-based approach to compare and study the genomic features of these four ExPEC lineages in relation to their functional properties. Findings from this study highlight the differences in the genomic coordinates of ST131 with respect to the other STs considered here. Results from this comparative genomics study can help in advancing the understanding of ST131 evolution and also offer a framework towards future developments in pathogen identification and targeted therapeutics to prevent diseases caused by this pandemicE. coliST131 clone.

2019 ◽  
Vol 8 (27) ◽  
Author(s):  
Amrita Salim ◽  
Pradeesh Babu ◽  
Keerthi Mohan ◽  
Manju Moorthy ◽  
Devika Raj ◽  
...  

ABSTRACT We report the draft genome sequence of Escherichia coli ASBT-1, a representative of E. coli sequence type 155 (ST155), obtained from India. Considering the known wide variety of pathogenic and antibiotic resistance potentials, this strain should be of great interest for detailed comparative genomic analysis.


2015 ◽  
Vol 59 (10) ◽  
pp. 6087-6095 ◽  
Author(s):  
Amit Ranjan ◽  
Sabiha Shaik ◽  
Arif Hussain ◽  
Nishant Nandanwar ◽  
Torsten Semmler ◽  
...  

ABSTRACTEscherichia colisequence type 131 (ST131) is a pandemic clone associated with multidrug-resistant, extraintestinal infections, attributable to the presence of the CTX-M-15 extended-spectrum β-lactamase gene and mutations entailing fluoroquinolone resistance. Studies on subclones withinE. coliST131 are critically required for targeting and implementation of successful control efforts. Our study comprehensively analyzed the genomic and functional attributes of theH30-Rx subclonal strains NA097 and NA114, belonging to the ST131 lineage. We carried out whole-genome sequencing, comparative analysis, phenotypic virulence assays, and profiling of the antibacterial responses of THP1 cells infected with these subclones. Phylogenomic analysis suggested that the strains were clonal in nature and confined entirely to a single clade. Comparative genomic analysis revealed that the virulence and resistance repertoires were comparable among theH30-Rx ST131 strains except for the commensal ST131 strain SE15. Similarly, seven phage-specific regions were found to be strongly associated with theH30-Rx strains but were largely absent in the genome of SE15. Phenotypic analysis confirmed the virulence and resistance similarities between the two strains. However, NA097 was found to be more robust than NA114 in terms of virulence gene carriage (draoperon), invasion ability (P< 0.05), and antimicrobial resistance (streptomycin resistance). RT2gene expression profiling revealed generic upregulation of key proinflammatory responses in THP1 cells, irrespective of ST131 lineage status. In conclusion, our study provides comprehensive, genome-inferred insights into the biology and immunological properties of ST131 strains and suggests clonal diversification of genomic and phenotypic features within theH30-Rx subclone ofE. coliST131.


2019 ◽  
Author(s):  
Marian Dominguez-Mirazo ◽  
Rong Jin ◽  
Joshua S. Weitz

AbstractHuanglongbing (HLB; yellow shoot disease) is a severe worldwide infectious disease for citrus family plants. The pathogen Candidatus Liberibacter asiaticus (CLas) is an alphapro-teobacterium of the Rhizobiaceae family that has been identified as the cause. The virulence of CLas has been attributed, in part, to prophage encoded genes. Prophage and prophage like elements have been identified in 12 of the 15 CLas available genomes, and are classified into three prophage types. Here, we re-examined all 15 CLas genomes using a de novo prediction approach and expanded the number of prophage like elements from 16 to 33. Further, we find that all CLas contain at least one prophage-like sequence. Comparative analysis reveals a prevalent, albeit previously unknown, prophage-like sequence type that is a remnant of an integrated prophage. Notably, this remnant prophage is found in the Ishi-1 CLas strain that had previously been reported as lacking prophages. Our findings provide both a resource and new insights into the evolutionary relationship between phage and CLas pathogenicity.


mSystems ◽  
2021 ◽  
Author(s):  
Wangxiao Zhou ◽  
Ye Jin ◽  
Yanzi Zhou ◽  
Yuan Wang ◽  
Luying Xiong ◽  
...  

Understanding the evolution and dissemination of community-genotype ST72 Staphylococcus aureus isolates is important, as isolates of this lineage have rapidly spread into hospital settings and caused serious health issues. In this study, we first carried out genome-wide analysis of 107 global ST72 isolates to characterize the evolution and genetic diversity of the ST72 lineage.


2008 ◽  
Vol 190 (20) ◽  
pp. 6881-6893 ◽  
Author(s):  
David A. Rasko ◽  
M. J. Rosovitz ◽  
Garry S. A. Myers ◽  
Emmanuel F. Mongodin ◽  
W. Florian Fricke ◽  
...  

ABSTRACT Whole-genome sequencing has been skewed toward bacterial pathogens as a consequence of the prioritization of medical and veterinary diseases. However, it is becoming clear that in order to accurately measure genetic variation within and between pathogenic groups, multiple isolates, as well as commensal species, must be sequenced. This study examined the pangenomic content of Escherichia coli. Six distinct E. coli pathovars can be distinguished using molecular or phenotypic markers, but only two of the six pathovars have been subjected to any genome sequencing previously. Thus, this report provides a seminal description of the genomic contents and unique features of three unsequenced pathovars, enterotoxigenic E. coli, enteropathogenic E. coli, and enteroaggregative E. coli. We also determined the first genome sequence of a human commensal E. coli isolate, E. coli HS, which will undoubtedly provide a new baseline from which workers can examine the evolution of pathogenic E. coli. Comparison of 17 E. coli genomes, 8 of which are new, resulted in identification of ∼2,200 genes conserved in all isolates. We were also able to identify genes that were isolate and pathovar specific. Fewer pathovar-specific genes were identified than anticipated, suggesting that each isolate may have independently developed virulence capabilities. Pangenome calculations indicate that E. coli genomic diversity represents an open pangenome model containing a reservoir of more than 13,000 genes, many of which may be uncharacterized but important virulence factors. This comparative study of the species E. coli, while descriptive, should provide the basis for future functional work on this important group of pathogens.


mSphere ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Steffen L. Jørgensen ◽  
Marc Stegger ◽  
Eglé Kudirkiene ◽  
Berit Lilje ◽  
Louise L. Poulsen ◽  
...  

ABSTRACTAvian-pathogenicEscherichia coli(APEC) is a subgroup of extraintestinal pathogenicE.coli(ExPEC) presumed to be zoonotic and to represent an external reservoir for extraintestinal infections in humans, including uropathogenicE. coli(UPEC) causing urinary tract infections. Comparative genomics has previously been applied to investigate whether APEC and human ExPEC are distinct entities. Even so, whole-genome-based studies are limited, and large-scale comparisons focused on single sequence types (STs) are not available yet. In this study, comparative genomic analysis was performed on 323 APEC and human ExPEC genomes belonging to sequence type 95 (ST95) to investigate whether APEC and human ExPEC are distinct entities. Our study showed that APEC of ST95 did not constitute a unique ExPEC branch and was genetically diverse. A large genetic overlap between APEC and certain human ExPEC was observed, with APEC located on multiple branches together with closely related human ExPEC, including nearly identical APEC and human ExPEC. These results illustrate that certain ExPEC clones may indeed have the potential to cause infection in both poultry and humans. Previously described ExPEC-associated genes were found to be encoded on ColV plasmids. These virulence-associated plasmids seem to be crucial for ExPEC strains to cause avian colibacillosis and are strongly associated with strains of the mixed APEC/human ExPEC clusters. The phylogenetic analysis revealed two distinct branches consisting of exclusively closely related human ExPEC which did not carry the virulence-associated plasmids, emphasizing a lower avian virulence potential of human ExPEC in relation to an avian host.IMPORTANCEAPEC causes a range of infections in poultry, collectively called colibacillosis, and is the leading cause of mortality and is associated with major economic significance in the poultry industry. A growing number of studies have suggested APEC as an external reservoir of human ExPEC, including UPEC, which is a reservoir. ExPEC belonging to ST95 is considered one of the most important pathogens in both poultry and humans. This study is the first in-depth whole-genome-based comparison of ST95E. coliwhich investigates both the core genomes as well as the accessory genomes of avian and human ExPEC. We demonstrated that multiple lineages of ExPEC belonging to ST95 exist, of which the majority may cause infection in humans, while only part of the ST95 cluster seem to be avian pathogenic. These findings further support the idea that urinary tract infections may be a zoonotic infection.


2016 ◽  
Vol 84 (8) ◽  
pp. 2362-2371 ◽  
Author(s):  
Tracy H. Hazen ◽  
Susan R. Leonard ◽  
Keith A. Lampel ◽  
David W. Lacher ◽  
Anthony T. Maurelli ◽  
...  

EnteroinvasiveEscherichia coli(EIEC) is a unique pathovar that has a pathogenic mechanism nearly indistinguishable from that ofShigellaspecies. In contrast to isolates of the fourShigellaspecies, which are widespread and can be frequent causes of human illness, EIEC causes far fewer reported illnesses each year. In this study, we analyzed the genome sequences of 20 EIEC isolates, including 14 first described in this study. Phylogenomic analysis of the EIEC genomes demonstrated that 17 of the isolates are present in three distinct lineages that contained only EIEC genomes, compared to reference genomes from each of theE. colipathovars andShigellaspecies. Comparative genomic analysis identified genes that were unique to each of the three identified EIEC lineages. While many of the EIEC lineage-specific genes have unknown functions, those with predicted functions included a colicin and putative proteins involved in transcriptional regulation or carbohydrate metabolism.In silicodetection of theShigellavirulence plasmid (pINV), which is essential for the invasion of host cells, demonstrated that a form of pINV was present in nearly all EIEC genomes, but the Mxi-Spa-Ipa region of the plasmid that encodes the invasion-associated proteins was absent from several of the EIEC isolates. The comparative genomic findings in this study support the hypothesis that multiple EIEC lineages have evolved independently from multiple distinct lineages ofE. colivia the acquisition of theShigellavirulence plasmid and, in some cases, theShigellapathogenicity islands.


2012 ◽  
Vol 56 (12) ◽  
pp. 6358-6365 ◽  
Author(s):  
Arif Hussain ◽  
Christa Ewers ◽  
Nishant Nandanwar ◽  
Sebastian Guenther ◽  
Savita Jadhav ◽  
...  

ABSTRACTEscherichia colisequence type 131 (O25b:H4), associated with the CTX-M-15 extended-spectrum beta-lactamases (ESBLs) and linked predominantly to the community-onset antimicrobial-resistant infections, has globally emerged as a public health concern. However, scant attention is given to the understanding of the molecular epidemiology of these strains in high-burden countries such as India. Of the 100 clinicalE. coliisolates obtained by us from a setting where urinary tract infections are endemic, 16 ST131E. coliisolates were identified by multilocus sequence typing (MLST). Further, genotyping and phenotyping methods were employed to characterize their virulence and drug resistance patterns. All the 16 ST131 isolates harbored the CTX-M-15 gene, and half of them also carried TEM-1; 11 of these were positive forblaOXAgroups 1 and 12 foraac(6′)-Ib-cr. At least 12 isolates were refractory to four non-beta-lactam antibiotics: ciprofloxacin, gentamicin, sulfamethoxazole-trimethoprim, and tetracycline. Nine isolates carried the class 1 integron. Plasmid analysis indicated a large pool of up to six plasmids per strain with a mean of approximately three plasmids. Conjugation and PCR-based replicon typing (PBRT) revealed that the spread of resistance was associated with the FIA incompatibility group of plasmids. Pulsed-field gel electrophoresis (PFGE) and genotyping of the virulence genes showed a low level of diversity among these strains. The association of ESBL-encoding plasmid with virulence was demonstrated in transconjugants by serum assay. None of the 16 ST131 ESBL-producingE. colistrains were known to synthesize carbapenemase enzymes. In conclusion, our study reports a snapshot of the highly virulent/multiresistant clone ST131 of uropathogenicE. colifrom India. This study suggests that the ST131 genotypes from this region are clonally evolved and are strongly associated with the CTX-M-15 enzyme, carry a high antibiotic resistance background, and have emerged as an important cause of community-acquired urinary tract infections.


2021 ◽  
Vol 12 ◽  
Author(s):  
Felipe Cabarcas ◽  
Ana Luz Galvan-Diaz ◽  
Laura M. Arias-Agudelo ◽  
Gisela María García-Montoya ◽  
Juan M. Daza ◽  
...  

Cryptosporidium is a leading cause of waterborne outbreaks globally, and Cryptosporidium hominis and C. parvum are the principal cause of human cryptosporidiosis on the planet. Thanks to the advances in Next-Generation Sequencing (NGS) sequencing and bioinformatic software development, more than 100 genomes have been generated in the last decade using a metagenomic-like strategy. This procedure involves the parasite oocyst enrichment from stool samples of infected individuals, NGS sequencing, metagenomic assembly, parasite genome computational filtering, and comparative genomic analysis. Following this approach, genomes of infected individuals of all continents have been generated, although with striking different quality results. In this study, we performed a thorough comparison, in terms of assembly quality and purity, of 100+ de novo assembled genomes of C. hominis. Remarkably, after quality genome filtering, a comprehensive phylogenomic analysis allowed us to discover that C. hominis encompasses two lineages with continental segregation. These lineages were named based on the observed continental distribution bias as C. hominis Euro-American (EA) and the C. hominis Afro-Asian (AA) lineages.


2016 ◽  
Vol 82 (6) ◽  
pp. 1889-1897 ◽  
Author(s):  
Po-An Chen ◽  
Chih-Hsin Hung ◽  
Ping-Chih Huang ◽  
Jung-Ren Chen ◽  
I-Fei Huang ◽  
...  

ABSTRACTExtended-spectrum β-lactamase (ESBL)-producingEscherichia colisequence type ST131 has emerged as the leading cause of community-acquired urinary tract infections and bacteremia worldwide. Whether environmental water is a potential reservoir of these strains remains unclear. River water samples were collected from 40 stations in southern Taiwan from February to August 2014. PCR assay and multilocus sequence typing (MLST) analysis were conducted to determine the CTX-M group and sequence type, respectively. In addition, we identified the seasonal frequency of ESBL-producingE. colistrains and their geographical relationship with runoffs from livestock and poultry farms between February and August 2014. ESBL-producingE. coliaccounted for 30% of the 621E. colistrains isolated from river water in southern Taiwan. ESBL-producingE. coliST131 was not detected among the isolates. The most commonly detected strain wasE. coliCTX-M group 9. Among the 92 isolates selected for MLST analysis, the most common ESBL-producing clonal complexes were ST10 and ST58. The proportion of ESBL-producingE. coliwas significantly higher in areas with a lower river pollution index (P= 0.025) and regions with a large number of chickens being raised (P= 0.013). ESBL-producingE. colistrains were commonly isolated from river waters in southern Taiwan. The most commonly isolated ESBL-producing clonal complexes were ST10 and ST58, which were geographically related to chicken farms. ESBL-producingE. coliST131, the major clone causing community-acquired infections in Taiwan and worldwide, was not detected in river waters.


Sign in / Sign up

Export Citation Format

Share Document