scholarly journals Coordinated Action of Nap1 and RSC in Disassembly of Tandem Nucleosomes

2016 ◽  
Vol 36 (17) ◽  
pp. 2262-2271 ◽  
Author(s):  
Rashmi Prasad ◽  
Sheena D'Arcy ◽  
Arjan Hada ◽  
Karolin Luger ◽  
Blaine Bartholomew

The SWI/SNF and RSC family of ATP-dependent chromatin remodelers disassembles nucleosomes by moving nucleosomes into the vicinity of adjoining nucleosomes. We found that the histone chaperone Nap1 efficiently promotes disassembly of adjacent nucleosomes with which RSC collides and not the disassembly of nucleosomes mobilized by RSC. Nap1 is specific to RSC, as it does not target SWI/SNF, its paralog inSaccharomyces cerevisiae. Extensive mutational analysis of Nap1 has revealed that Nap1 affinity for histones H2A-H2B and H3-H4 and its ability to displace histones from DNA are required for Nap1 to enhance RSC-mediated disassembly. Other histone chaperones, such as Vps75, that also bind histones are not able to enhance RSC-mediated disassembly. Our study suggests a mechanism by which Nap1 is recruited to actively transcribed regions and assists in the passage of the transcription complex through chromatin, and it provides a novel mechanism for the coordinated action of RSC and Nap1.

2018 ◽  
Author(s):  
Rakesh Pathak ◽  
Priyanka Singh ◽  
Sudha Ananthakrishnan ◽  
Sarah Adamczyk ◽  
Olivia Schimmel ◽  
...  

ABSTRACTHistone chaperones, chromatin remodelers, and histone modifying complexes play a critical role in alleviating the nucleosomal barrier. Here, we have examined the role of two highly conserved yeast (Saccharomyces cerevisiae) histone chaperones, FACT and Spt6, in regulating transcription and histone occupancy. We show that the H3 tail contributes to the recruitment of FACT to coding sequences in a manner dependent on acetylation. We found that deleting a H3 HAT Gcn5 or mutating lysines on the H3 tail impairs FACT recruitment at ADH1 and ARG1 genes. However, deleting the H4 tail or mutating the H4 lysines failed to dampen FACT occupancy in coding regions. Additionally, we show that FACT-depletion greatly reduces Pol II occupancy in the 5’ ends genome-wide. By contrast, Spt6-depletion led to reduction in Pol II occupancy towards the 3’ end, in a manner dependent on the gene-length. Severe transcription and histone eviction defects were also observed in a strain that was impaired for Spt6 recruitment (spt6Δ202) and depleted of FACT. Importantly, the severity of the defect strongly correlated with WT Pol II occupancies at these genes, indicating critical roles of Spt6 and Spt16 in promoting high-level transcription. Collectively, our study shows cooperation, as well as redundancy between chaperones, FACT and Spt6, in regulating transcription and chromatin in coding regions of transcribed genes.


2011 ◽  
Vol 10 (10) ◽  
pp. 1283-1294 ◽  
Author(s):  
Justin A. Pruneski ◽  
Sarah J. Hainer ◽  
Kostadin O. Petrov ◽  
Joseph A. Martens

ABSTRACT Previous studies have shown that repression of the Saccharomyces cerevisiae SER3 gene is dependent on transcription of SRG1 from noncoding DNA initiating within the intergenic region 5′ of SER3 and extending across the SER3 promoter region. By a mechanism dependent on the activities of the Swi/Snf chromatin remodeling factor, the HMG-like factor Spt2, and the Spt6 and Spt16 histone chaperones, SRG1 transcription deposits nucleosomes over the SER3 promoter to prevent transcription factors from binding and activating SER3 . In this study, we uncover a role for the Paf1 transcription elongation complex in SER3 repression. We find that SER3 repression is primarily dependent on the Paf1 and Ctr9 subunits of this complex, with minor contributions by the Rtf1, Cdc73, and Leo1 subunits. We show that the Paf1 complex localizes to the SRG1 transcribed region under conditions that repress SER3 , consistent with it having a direct role in mediating SRG1 transcription-dependent SER3 repression. Importantly, we show that the defect in SER3 repression in strains lacking Paf1 subunits is not a result of reduced SRG1 transcription or reduced levels of known Paf1 complex-dependent histone modifications. Rather, we find that strains lacking subunits of the Paf1 complex exhibit reduced nucleosome occupancy and reduced recruitment of Spt16 and, to a lesser extent, Spt6 at the SER3 promoter. Taken together, our results suggest that Paf1 and Ctr9 repress SER3 by maintaining SRG1 transcription-dependent nucleosome occupancy.


2012 ◽  
Vol 11 (7) ◽  
pp. 952-960 ◽  
Author(s):  
Michael E. Johnson ◽  
Thomas D. Edlind

ABSTRACTFks1, with orthologs in nearly all fungi as well as plants and many protists, plays a central role in fungal cell wall formation as the putative catalytic component of β-1,3-glucan synthase. It is also the target for an important new antifungal group, the echinocandins, as evidenced by the localization of resistance-conferring mutations to Fks1 hot spots 1, 2, and 3 (residues 635 to 649, 1354 to 1361, and 690 to 700, respectively). Since Fks1 is an integral membrane protein and echinocandins are cyclic peptides with lipid tails, Fks1 topology is key to understanding its function and interaction with echinocandins. We used hemagglutinin (HA)-Suc2-His4C fusions to C-terminally truncatedSaccharomyces cerevisiaeFks1 to experimentally define its topology and site-directed mutagenesis to test function of selected residues. Of the 15 to 18 transmembrane helices predictedin silicofor Fks1 from evolutionarily diverse fungi, 13 were experimentally confirmed. The N terminus (residues 1 to 445) is cytosolic and the C terminus (residues 1823 to 1876) external; both are essential to Fks1 function. The cytosolic central domain (residues 715 to 1294) includes newly recognized homology to glycosyltransferases, and residues potentially involved in substrate UDP-glucose binding and catalysis are essential. All three hot spots are external, with hot spot 1 adjacent to and hot spot 3 largely embedded within the outer leaflet of the membrane. This topology suggests a model in which echinocandins interact through their lipid tails with hot spot 3 and through their cyclic peptides with hot spots 1 and 2.


2018 ◽  
Author(s):  
Rakesh Pathak ◽  
Priyanka Singh ◽  
Sudha Ananthakrishnan ◽  
Sarah Adamczyk ◽  
Olivia Schimmel ◽  
...  

ABSTRACTHistone chaperones, chromatin remodelers, and histone modifying complexes play a critical role in alleviating the nucleosomal barrier for DNA-dependent processes. Here, we have examined the role of two highly conserved yeast (Saccharomyces cerevisiae) histone chaperones, FACT and Spt6, in regulating transcription. We show that the H3 tail contributes to the recruitment of FACT to coding sequences in a manner dependent on acetylation. We found that deleting a H3 HAT Gcn5 or mutating lysines on the H3 tail impairs FACT recruitment at ADH1 and ARG1 genes. However, deleting the H4 tail or mutating the H4 lysines failed to dampen FACT occupancy in coding regions. Additionally, we show that FACT-depletion reduces Pol II occupancy in the 5’ ends genome-wide. In contrast, Spt6-depletion leads to reduction in Pol II occupancy towards the 3’ end, in a manner dependent on the gene-length. Severe transcription and histone eviction defects were also observed in a strain that was impaired for Spt6 recruitment (spt6Δ202) and depleted of FACT. Importantly, the severity of the defect strongly correlated with WT Pol II occupancies at these genes, indicating critical roles of Spt6 and Spt16 in promoting high-level transcription. Collectively, our results show that both FACT and Spt6 are important for transcription globally and may participate during different stages of transcription.


2019 ◽  
Vol 47 (14) ◽  
pp. 7380-7391 ◽  
Author(s):  
Joy M Cote ◽  
Yin-Ming Kuo ◽  
Ryan A Henry ◽  
Hataichanok Scherman ◽  
Daniel D Krzizike ◽  
...  

Abstract The ability of histone chaperone Anti-silencing factor 1 (Asf1) to direct acetylation of lysine 56 of histone H3 (H3K56ac) represents an important regulatory step in genome replication and DNA repair. In Saccharomyces cerevisiae, Asf1 interacts functionally with a second chaperone, Vps75, and the lysine acetyltransferase (KAT) Rtt109. Both Asf1 and Vps75 can increase the specificity of histone acetylation by Rtt109, but neither alter selectivity. However, changes in acetylation selectivity have been observed in histones extracted from cells, which contain a plethora of post-translational modifications. In the present study, we use a series of singly acetylated histones to test the hypothesis that histone pre-acetylation and histone chaperones function together to drive preferential acetylation of H3K56. We show that pre-acetylated H3K14ac/H4 functions with Asf1 to drive specific acetylation of H3K56 by Rtt109–Vps75. Additionally, we identified an exosite containing an acidic patch in Asf1 and show that mutations to this region alter Asf1-mediated crosstalk that changes Rtt109–Vps75 selectivity. Our proposed mechanism suggests that Gcn5 acetylates H3K14, recruiting remodeler complexes, allowing for the Asf1-H3K14ac/H4 complex to be acetylated at H3K56 by Rtt109–Vps75. This mechanism explains the conflicting biochemical data and the genetic links between Rtt109, Vps75, Gcn5 and Asf1 in the acetylation of H3K56.


2011 ◽  
Vol 55 (11) ◽  
pp. 5099-5106 ◽  
Author(s):  
Scott S. Walker ◽  
Yiming Xu ◽  
Ilias Triantafyllou ◽  
Michelle F. Waldman ◽  
Cara Mendrick ◽  
...  

ABSTRACTThe echinocandins are a class of semisynthetic natural products that target β-1,3-glucan synthase (GS). Their proven clinical efficacy combined with minimal safety issues has made the echinocandins an important asset in the management of fungal infection in a variety of patient populations. However, the echinocandins are delivered only parenterally. A screen for antifungal bioactivities combined with mechanism-of-action studies identified a class of piperazinyl-pyridazinones that target GS. The compounds exhibitedin vitroactivity comparable, and in some cases superior, to that of the echinocandins. The compounds inhibit GSin vitro, and there was a strong correlation between enzyme inhibition andin vitroantifungal activity. In addition, like the echinocandins, the compounds caused a leakage of cytoplasmic contents from yeast and produced a morphological response in molds characteristic of GS inhibitors. Spontaneous mutants ofSaccharomyces cerevisiaewith reduced susceptibility to the piperazinyl-pyridazinones had substitutions inFKS1. The sites of these substitutions were distinct from those conferring resistance to echinocandins; likewise, echinocandin-resistant isolates remained susceptible to the test compounds. Finally, we present efficacy and pharmacokinetic data on an example of the piperazinyl-pyridazinone compounds that demonstrated efficacy in a murine model ofCandida glabratainfection.


2012 ◽  
Vol 40 (2) ◽  
pp. 357-363 ◽  
Author(s):  
Wallace H. Liu ◽  
Mair E.A. Churchill

The eukaryotic processes of nucleosome assembly and disassembly govern chromatin dynamics, in which histones exchange in a highly regulated manner to promote genome accessibility for all DNA-dependent processes. This regulation is partly carried out by histone chaperones, which serve multifaceted roles in co-ordinating the interactions of histone proteins with modification enzymes, nucleosome remodellers, other histone chaperones and nucleosomal DNA. The molecular details of the processes by which histone chaperones promote delivery of histones among their many functional partners are still largely undefined, but promise to offer insights into epigenome maintenance. In the present paper, we review recent findings on the histone chaperone interactions that guide the assembly of histones H3 and H4 into chromatin. This evidence supports the concepts of histone post-translational modifications and specific histone chaperone interactions as guiding principles for histone H3/H4 transactions during chromatin assembly.


2013 ◽  
Vol 13 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Frans M. Klis ◽  
Chris G. de Koster ◽  
Stanley Brul

ABSTRACTBionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeastSaccharomyces cerevisiaeand the polymorphic, pathogenic fungusCandida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation ofin vivovalues. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allowsC. albicansto cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.


1989 ◽  
Vol 9 (11) ◽  
pp. 5265-5271 ◽  
Author(s):  
R E Susek ◽  
S L Lindquist

Analysis of the cloned gene confirms that hsp26 of Saccharomyces cerevisiae is a member of the small heat shock protein superfamily. Previous mutational analysis failed to demonstrate any function for the protein. Further experiments presented here demonstrate that hsp26 has no obvious regulatory role and no major effect on thermotolerance. It is possible that the small heat shock protein genes originated as primitive viral or selfish DNA elements.


Sign in / Sign up

Export Citation Format

Share Document