scholarly journals Interactome Analysis Reveals a Novel Role for RAD6 in the Regulation of Proteasome Activity and Localization in Response to DNA Damage

2016 ◽  
Vol 37 (6) ◽  
Author(s):  
Hongli An ◽  
Lu Yang ◽  
Chen Wang ◽  
Zhixue Gan ◽  
Haihui Gu ◽  
...  

ABSTRACT RAD6, an E2 ubiquitin-conjugating enzyme, is a key node for determining different DNA damage repair pathways, controlling both the error-prone and the error-free DNA damage repair pathways through differential regulation of the ubiquitination of the proliferating cell nuclear antigen (PCNA) protein. However, whether other pathways are involved in the RAD6-mediated regulation of DNA damage repair is still unclear. To deeply understand the molecular mechanisms of RAD6 in DNA damage repair, we performed a proteomic analysis and identified the changes of the protein-protein interaction (PPI) networks of RAD6 before and after X-ray irradiation. Furthermore, our study indicated that a proteasome-related event is likely involved in the DNA damage repair process. Moreover, we found that RAD6 promotes proteasome activity and nuclear translocation by enhancing the degradation of PSMF1 and the lamin B receptor (LBR). Therefore, we provide a novel pathway that is employed by RAD6 in response to DNA damage.

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 366-OR
Author(s):  
GRACE H. YANG ◽  
JEE YOUNG HAN ◽  
SUKANYA LODH ◽  
JOSEPH T. BLUMER ◽  
DANIELLE FONTAINE ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1289 ◽  
Author(s):  
Xing Bian ◽  
Wenchu Lin

Small cell lung cancer (SCLC), accounting for about 15% of all cases of lung cancer worldwide, is the most lethal form of lung cancer. Despite an initially high response rate of SCLC to standard treatment, almost all patients are invariably relapsed within one year. Effective therapeutic strategies are urgently needed to improve clinical outcomes. Replication stress is a hallmark of SCLC due to several intrinsic factors. As a consequence, constitutive activation of the replication stress response (RSR) pathway and DNA damage repair system is involved in counteracting this genotoxic stress. Therefore, therapeutic targeting of such RSR and DNA damage repair pathways will be likely to kill SCLC cells preferentially and may be exploited in improving chemotherapeutic efficiency through interfering with DNA replication to exert their functions. Here, we summarize potentially valuable targets involved in the RSR and DNA damage repair pathways, rationales for targeting them in SCLC treatment and ongoing clinical trials, as well as possible predictive biomarkers for patient selection in the management of SCLC.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Richard D. A. Wilkinson ◽  
Roberta E. Burden ◽  
Sara H. McDowell ◽  
Darragh G. McArt ◽  
Stephen McQuaid ◽  
...  

Cathepsin S (CTSS) has previously been implicated in a number of cancer types, where it is associated with poor clinical features and outcome. To date, patient outcome in breast cancer has not been examined with respect to this protease. Here, we carried out immunohistochemical (IHC) staining of CTSS using a breast cancer tissue microarray in patients who received adjuvant therapy. We scored CTSS expression in the epithelial and stromal compartments and evaluated the association of CTSS expression with matched clinical outcome data. We observed differences in outcome based on CTSS expression, with stromal-derived CTSS expression correlating with a poor outcome and epithelial CTSS expression associated with an improved outcome. Further subtype characterisation revealed high epithelial CTSS expression in TNBC patients with improved outcome, which remained consistent across two independent TMA cohorts. Furtherin silicogene expression analysis, using both in-house and publicly available datasets, confirmed these observations and suggested high CTSS expression may also be beneficial to outcome in ER-/HER2+ cancer. Furthermore, high CTSS expression was associated with the BL1 Lehmann subgroup, which is characterised by defects in DNA damage repair pathways and correlates with improved outcome. Finally, analysis of matching IHC analysis reveals an increased M1 (tumour destructive) polarisation in macrophage in patients exhibiting high epithelial CTSS expression. In conclusion, our observations suggest epithelial CTSS expression may be prognostic of improved outcome in TNBC. Improved outcome observed with HER2+ at the gene expression level furthermore suggests CTSS may be prognostic of improved outcome in ER- cancers as a whole. Lastly, from the context of these patients receiving adjuvant therapy and as a result of its association with BL1 subgroup CTSS may be elevated in patients with defects in DNA damage repair pathways, indicating it may be predictive of tumour sensitivity to DNA damaging agents.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 3111-3111
Author(s):  
Biswajit Das ◽  
Yvonne A. Evrard ◽  
Li Chen ◽  
Rajesh Patidar ◽  
Tomas Vilimas ◽  
...  

3111 Background: Patient-derived xenografts (PDXs) are increasingly being used in translational cancer research for preclinical drug efficacy studies. The National Cancer Institute (NCI) has developed a Patient-Derived Models Repository (NCI PDMR; pdmr.cancer.gov ) of PDXs with clinical annotation, proteomics, and comprehensive genomic datasets to facilitate these studies. Here, we present an integrative genomic, transcriptomic, and proteomic analysis of critical signaling and DNA damage repair pathways in these PDX models, which represent 9 common and multiple rare tumor histologies. Methods: 304 PDX models from 294 patients were established from various solid tumor histologies from patients with primary or metastatic cancer. Whole Exome Sequencing, RNA-Seq and Reverse Phase Protein Array (RPPA) were performed on 2-9 PDXs per model across multiple passages. An integrative workflow was applied on multiple data sets to detect pathway activation. Results: We profiled 10 signaling and 5 DNA repair pathways in the PDMR dataset. We observed that: (i) a large fraction (40%) of PDX models have at least 1 targetable mutation in the RTK/RAS and/or PIK3CA pathways; (ii) 131 models (45%) have putative driver and oncogenic mutations and copy number variants (CNVs) in the WNT, TGFRb , NRF2 and NOTCH pathways. In addition, 17% of PDX models have targetable mutations in DNA damage repair pathways and 20 PDMR models have a DNA mismatch repair defect (MSI-H). We confirmed activation of the signaling pathways in a subset of PDX models by pathway enrichment analysis on gene expression data from RNASeq and phosphoprotein-specific antibody binding data from RPPA. Activation of DNA repair processes was confirmed by enrichment of relevant mutational signatures and loss of heterozygosity in these PDX models. Conclusions: Genomic analysis of NCI PDMR models revealed that a large fraction have clinically relevant somatic alterations in key signaling and DNA damage repair pathways. Further integrative analyses with matched transcriptomic and proteomic profiles confirmed pathway activation in a subset of these models, which may prioritize them for preclinical drug studies.


Sign in / Sign up

Export Citation Format

Share Document