scholarly journals Analysis of Turnover and Translation Regulatory RNA-Binding Protein Expression through Binding to Cognate mRNAs

2007 ◽  
Vol 27 (18) ◽  
pp. 6265-6278 ◽  
Author(s):  
Rudolf Pullmann ◽  
Hyeon Ho Kim ◽  
Kotb Abdelmohsen ◽  
Ashish Lal ◽  
Jennifer L. Martindale ◽  
...  

ABSTRACT RNA-binding proteins (RBPs) that associate with specific mRNA sequences and function as mRNA turnover and translation regulatory (TTR) RBPs are emerging as pivotal posttranscriptional regulators of gene expression. However, little is known about the mechanisms that govern the expression of TTR-RBPs. Here, we employed human cervical carcinoma HeLa cells to test the hypothesis that TTR-RBP expression is influenced posttranscriptionally by TTR-RBPs themselves. Systematic testing of the TTR-RBPs AUF1, HuR, KSRP, NF90, TIA-1, and TIAR led to three key discoveries. First, each TTR-RBP was found to associate with its cognate mRNA and with several other TTR-RBP-encoding mRNAs, as determined by testing both endogenous and biotinylated transcripts. Second, silencing of individual TTR-RBPs influenced the expression of other TTR-RBPs at the mRNA and/or protein level. Third, further analysis of two specific ribonucleoprotein (RNP) complexes revealed that TIA-1 expression was controlled via HuR-enhanced mRNA stabilization and TIAR-repressed translation. Together, our findings underscore the notion that TTR-RBP expression is controlled, at least in part, at the posttranscriptional level through a complex circuitry of self- and cross-regulatory RNP interactions.

2006 ◽  
Vol 17 (1) ◽  
pp. 14-24 ◽  
Author(s):  
Maria Paola Paronetto ◽  
Francesca Zalfa ◽  
Flavia Botti ◽  
Raffaele Geremia ◽  
Claudia Bagni ◽  
...  

Translational control plays a crucial role during gametogenesis in organisms as different as worms and mammals. Mouse knockout models have highlighted the essential function of many RNA-binding proteins during spermatogenesis. Herein we have investigated the expression and function during mammalian male meiosis of Sam68, an RNA-binding protein implicated in several aspects of RNA metabolism. Sam68 expression and localization within the cells is stage specific: it is expressed in the nucleus of spermatogonia, it disappears at the onset of meiosis (leptotene/zygotene stages), and it accumulates again in the nucleus of pachytene spermatocytes and round spermatids. During the meiotic divisions, Sam68 translocates to the cytoplasm where it is found associated with the polysomes. Translocation correlates with serine/threonine phosphorylation and it is blocked by inhibitors of the mitogen activated protein kinases ERK1/2 and of the maturation promoting factor cyclinB-cdc2 complex. Both kinases associate with Sam68 in pachytene spermatocytes and phosphorylate the regulatory regions upstream and downstream of the Sam68 RNA-binding motif. Molecular cloning of the mRNAs associated with Sam68 in mouse spermatocytes reveals a subset of genes that might be posttranscriptionally regulated by this RNA-binding protein during spermatogenesis. We also demonstrate that Sam68 shuttles between the nucleus and the cytoplasm in secondary spermatocytes, suggesting that it may promote translation of specific RNA targets during the meiotic divisions.


2020 ◽  
Author(s):  
Edwin B. Corgiat ◽  
Sara M. List ◽  
J. Christopher Rounds ◽  
Anita H. Corbett ◽  
Kenneth H. Moberg

AbstractThe human ZC3H14 gene, which encodes a ubiquitously expressed polyadenosine zinc finger RNA binding protein, is mutated in an inherited form of autosomal recessive, non-syndromic intellectual disability. To gain insight into ZC3H14 neurological functions, we previously developed a Drosophila melanogaster model of ZC3H14 loss by deleting the fly ortholog, Nab2. Studies in this invertebrate model reveal that Nab2 controls final patterns of neuron projection within fully developed adult brains. Here, we examine earlier pupal stages and define roles for Nab2 in controlling the dynamic growth of axons into the developing brain mushroom bodies (MBs), which support olfactory learning and memory, and in regulating abundance of a small fraction of the total brain proteome, a portion of which is rescued by overexpression of Nab2 specifically in brain neurons. The group of Nab2-regulated brain proteins, identified by quantitative proteomic analysis, includes the microtubule binding protein Futsch, the neuronal Ig-family transmembrane protein Turtle, the glial:neuron adhesion protein Contactin, the RacGAP Tumbleweed, and the planar cell polarity factor Van Gogh, which collectively link Nab2 to a the processes of brain morphogenesis, neuroblast proliferation, circadian sleep/wake cycles, and synaptic development. Overall, these data indicate that Nab2 controls abundance of a subset of brain proteins during the active process of wiring the pupal brain mushroom body, and thus provide a window into potentially conserved functions of the Nab2/ZC3H14 RNA binding proteins in neurodevelopment and function.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 552
Author(s):  
Jasmine Harley ◽  
Benjamin E. Clarke ◽  
Rickie Patani

RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anastasiia Samsonova ◽  
Krystel El Hage ◽  
Bénédicte Desforges ◽  
Vandana Joshi ◽  
Marie-Jeanne Clément ◽  
...  

AbstractThe RNA-binding protein Lin28 (Lin28a) is an important pluripotency factor that reprograms translation and promotes cancer progression. Although Lin28 blocks let-7 microRNA maturation, Lin28 also binds to a large set of cytoplasmic mRNAs directly. However, how Lin28 regulates the processing of many mRNAs to reprogram global translation remains unknown. We show here, using a structural and cellular approach, a mixing of Lin28 with YB-1 (YBX1) in the presence of mRNA owing to their cold-shock domain, a conserved β-barrel structure that binds to ssRNA cooperatively. In contrast, the other RNA binding-proteins without cold-shock domains tested, HuR, G3BP-1, FUS and LARP-6, did not mix with YB-1. Given that YB-1 is the core component of dormant mRNPs, a model in which Lin28 gains access to mRNPs through its co-association with YB-1 to mRNA may provide a means for Lin28 to reprogram translation. We anticipate that the translational plasticity provided by mRNPs may contribute to Lin28 functions in development and adaptation of cancer cells to an adverse environment.


2011 ◽  
Vol 22 (16) ◽  
pp. 2875-2885 ◽  
Author(s):  
Mai Nguyen Chi ◽  
Jacques Auriol ◽  
Bernard Jégou ◽  
Dimitris L. Kontoyiannis ◽  
James M.A. Turner ◽  
...  

Posttranscriptional mechanisms are crucial to regulate spermatogenesis. Accurate protein synthesis during germ cell development relies on RNA binding proteins that control the storage, stability, and translation of mRNAs in a tightly and temporally regulated manner. Here, we focused on the RNA binding protein Embryonic Lethal Abnormal Vision (ELAV) L1/Human antigen R (HuR) known to be a key regulator of posttranscriptional regulation in somatic cells but the function of which during gametogenesis has never been investigated. In this study, we have used conditional loss- and gain-of-function approaches to address this issue in mice. We show that targeted deletion of HuR specifically in germ cells leads to male but not female sterility. Mutant males are azoospermic because of the extensive death of spermatocytes at meiotic divisions and failure of spermatid elongation. The latter defect is also observed upon HuR overexpression. To elucidate further the molecular mechanisms underlying spermatogenesis defects in HuR-deleted and -overexpressing testes, we undertook a target gene approach and discovered that heat shock protein (HSP)A2/HSP70-2, a crucial regulator of spermatogenesis, was down-regulated in both situations. HuR specifically binds hspa2 mRNA and controls its expression at the translational level in germ cells. Our study provides the first genetic evidence of HuR involvement during spermatogenesis and reveals Hspa2 as a target for HuR.


1996 ◽  
Vol 313 (3) ◽  
pp. 1029-1037 ◽  
Author(s):  
Olivier GENESTE ◽  
Françoise RAFFALLI ◽  
Matti A. LANG

Stabilization of mRNA is important in the regulation of CYP2a5 expression but the factors involved in the process are not known [Aida and Negishi (1991) Biochemistry 30, 8041–8045]. In this paper, we describe, for the first time, a protein that binds specifically to the 3′-untranslated region of CYP2a5 mRNA and which is inducible by pyrazole, a compound known to increase the half-life of CYP2a5 mRNA. We also demonstrate that pyrazole treatment causes an elongation of the CYP2a5 mRNA poly(A) tail, and that phenobarbital, which is transcriptional activator of the CYP2a5 gene that does not affect the mRNA half-life, neither induces the RNA-binding protein nor affects the poly(A) tail size. SDS/PAGE of the UV-cross-linked RNA–protein complex demonstrated that the RNA-binding protein has an apparent molecular mass of 44 kDa. The protein-binding site was localized to a 70-nucleotide region between bases 1585 and 1655. Treatment of cytoplasmic extracts with an SH-oxidizing agent, diamide, an SH-blocking agent, N-ethylmaleimide or potato acid phosphatase abolished complex-formation, suggesting that the CYP2a5 mRNA-binding protein is subject to post-translational regulation. Subcellular fractionation showed that the 44 kDa protein is present in polyribosomes and nuclei, and that its apparent induction is much stronger in polyribosomes than in nuclear extracts. We propose that this 44 kDA RNA-binding protein is involved in the stabilization of CYP2a5 mRNA by controlling the length of the poly(A) tail.


2012 ◽  
Vol 363 (2) ◽  
pp. 362-372
Author(s):  
Souhila Bentaya ◽  
Stephen M. Ghogomu ◽  
Jessica Vanhomwegen ◽  
Claude Van Campenhout ◽  
Aurore Thelie ◽  
...  

FEBS Letters ◽  
2012 ◽  
Vol 586 (19) ◽  
pp. 3299-3308 ◽  
Author(s):  
Zhiping Xia ◽  
Xinmin Zheng ◽  
Hang Zheng ◽  
Xiaojun Liu ◽  
Zhonghua Yang ◽  
...  

2016 ◽  
Vol 44 (5) ◽  
pp. 1321-1337 ◽  
Author(s):  
Andrew R. Clark ◽  
Jonathan L.E. Dean

Twenty years ago, the first description of a tristetraprolin (TTP) knockout mouse highlighted the fundamental role of TTP in the restraint of inflammation. Since then, work from several groups has generated a detailed picture of the expression and function of TTP. It is a sequence-specific RNA-binding protein that orchestrates the deadenylation and degradation of several mRNAs encoding inflammatory mediators. It is very extensively post-translationally modified, with more than 30 phosphorylations that are supported by at least two independent lines of evidence. The phosphorylation of two particular residues, serines 52 and 178 of mouse TTP (serines 60 and 186 of the human orthologue), has profound effects on the expression, function and localisation of TTP. Here, we discuss the control of TTP biology via its phosphorylation and dephosphorylation, with a particular focus on recent advances and on questions that remain unanswered.


Author(s):  
Masashi Yukawa ◽  
Mitsuki Ohishi ◽  
Yusuke Yamada ◽  
Takashi Toda

Cells form a bipolar spindle during mitosis to ensure accurate chromosome segregation. Proper spindle architecture is established by a set of kinesin motors and microtubule-associated proteins. In most eukaryotes, kinesin-5 motors are essential for this process, and genetic or chemical inhibition of their activity leads to the emergence of monopolar spindles and cell death. However, these deficiencies can be rescued by simultaneous inactivation of kinesin-14 motors, as they counteract kinesin-5. We conducted detailed genetic analyses in fission yeast to understand the mechanisms driving spindle assembly in the absence of kinesin-5. Here we show that deletion of the nrp1 gene, which encodes a putative RNA-binding protein with unknown function, can rescue temperature sensitivity caused by cut7-22, a fission yeast kinesin-5 mutant. Interestingly, kinesin-14/Klp2 levels on the spindles in the cut7 mutants were significantly reduced by the nrp1 deletion, although the total levels of Klp2 and the stability of spindle microtubules remained unaffected. Moreover, RNA-binding motifs of Nrp1 are essential for its cytoplasmic localization and function. We have also found that a portion of Nrp1 is spatially and functionally sequestered by chaperone-based protein aggregates upon mild heat stress and limits cell division at high temperatures. We propose that Nrp1 might be involved in post-transcriptional regulation through its RNA-binding ability to promote the loading of Klp2 on the spindle microtubules.


Sign in / Sign up

Export Citation Format

Share Document