scholarly journals Maternal Docosahexaenoic Acid Increases Adiponectin and Normalizes IUGR-Induced Changes in Rat Adipose Deposition

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Heidi N. Bagley ◽  
Yan Wang ◽  
Michael S. Campbell ◽  
Xing Yu ◽  
Robert H. Lane ◽  
...  

Intrauterine growth restriction (IUGR) predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor-γ2 (PPARγ2) in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPARγincreases subcutaneous adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with docosahexaenoic acid (DHA), a PPARγagonist, would normalize IUGR adipose deposition in association with increased PPARγ, adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized model of uteroplacental-insufficiency-(UPI-) induced IUGR in the rat with maternal DHA supplementation. Our primary findings were that maternal DHA supplementation during rat pregnancy and lactation (1) normalizes IUGR-induced changes in adipose deposition and visceral PPARγexpression in male rats and (2) increases serum adiponectin, as well as adipose expression of adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR.

2001 ◽  
Vol 354 (1) ◽  
pp. 225-232 ◽  
Author(s):  
Delphine HOURTON ◽  
Philippe DELERIVE ◽  
Jana STANKOVA ◽  
Bart STAELS ◽  
M. John CHAPMAN ◽  
...  

Regulation of the expression of platelet-activating factor (PAF) receptor by atherogenic lipoproteins might contribute to atherogenesis. We show that progressive oxidation of low-density lipoprotein (LDL) gradually inhibits PAF receptor expression on the macrophage cell surface. We tested the effect of oxidized LDL (oxLDL) on PAF receptor expression in human monocytes that do not contain peroxisome-proliferator-activated receptor γ (PPARγ), a nuclear receptor activated by oxLDL. OxLDL decreased by 50% (P ⩽0.001) and by 29% (P⩽0.05) the binding of PAF and the expression of PAF receptor mRNA respectively. Next we demonstrated that progressive oxidation of LDLs significantly activated PPARα-dependent transcription in transfected mouse aortic endothelial cells. Finally we demonstrated, in mature macrophages, that fenofibrate (20µM), a specific PPARα agonist, but not the specific PPARγ agonist BRL49653 (20nM), significantly decreased both PAF binding and PAF receptor mRNA expression, by 65% and 40% (P⩽0.001) respectively. Additionally, another PPARα agonist, Wy14,643, decreased PAF receptor promoter activity by 70% (P⩽0.05) in transfected THP-1 cells, suggesting the involvement of the proximal promoter region (-980 to -500) containing a series of four nuclear factor (NF)-κB motifs. Thus PPARα might be involved in the down-regulation of PAF receptor gene expression by oxLDLs in human monocytes/macrophages. The oxidation of one or more lipid components of LDLs might result in the formation of natural activators of PPARα. It is hypothesized that such activators might modulate inflammation and apoptosis upon atherogenesis by decreasing the expression of PAF receptor.


2017 ◽  
Vol 17 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Flavia Bittencourt Brasil ◽  
Luiz Henrique Amarante ◽  
Marcos Roberto de Oliveira

Abstract Objectives: describing the effects of maternal supplementation with folic acid (FA) exclusively during gestation on offspring's liver at later stages in life. Supplementation with FA during gestation has been recommended by the medical society worldwide. The liver has a central role on the substances of metabolism and homeostasis and some studies have shown that a high intake of FA at other periods in life may cause hepatic damage. Methods: a systematic review through which the following databases were consulted: Medline, through platforms of Pubmed, Lilacs and Scielo. The research was performed by keywords such as: "Folic acid", "Gestation", "Rat", "Offspring" and "Liver". Articles which evaluate the effect of FA consumption during both gestation and lactation were excluded. Results: FA consumption avoids disorders on expression of peroxisome proliferator-activated receptor alpha (PPARα) and glucocorticoid receptor (GccR), its lack did not change enzyme activity of the male offspring's liver in adulthood. Supplementation with FA during gestation did not change iron hepatic levels or lipid composition, but had an antioxidant effect on it. Conclusions: supplementation with FA at recommended doses did not cause toxic effects and is very likely to avoid deleterious effects in the liver of the offspring regarding the epigenetic level.


2010 ◽  
Vol 31 (4) ◽  
pp. 626-638 ◽  
Author(s):  
E. K. Lee ◽  
M. J. Lee ◽  
K. Abdelmohsen ◽  
W. Kim ◽  
M. M. Kim ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
pp. 112-120
Author(s):  
Jieqi Gong ◽  
Huanhua Lu

The objective of this study was to investigate the molecular mechanism of the histopathological characteristics of liver cirrhosis (LC) complicated with acute kidney injury (AKI) and the signaling pathway of silent information regulator 1 (SIRT1)-peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) during the pathogenesis of LC. 20 healthy male rats with AKI complicated by laparoscopic cholecystectomy were selected and divided randomly into control group (C group), lipopolysaccharide (LPS) group, bile duct ligation (BDL) group, and model group (lipopolysaccharide+BDL) (D group). The indexes of all the rats were determined, including serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), sarcoplasmic enzyme (Scr), and blood urea nitrogen (BUN); the SIRT1 and PGC-1α expressions in renal tissues of rats from each group was detected. Results showed that the AST and ALT levels in BDL group and D group were higher markedly than those before surgery (P < 0.05). The serum levels of Scr and BUN in D group 4 hours after LPS injection increased hugely compared with before injection (P < 0.05). Compared with BDL group, the protein levels of SIRT1 and PGC-1α in renal tissue of group D were decreased sharply (P < 0.05), and the SIRT1 protein expression was positively correlated with PGC-1α (r = 0.836 and P < 0.01). When LC were complicated with AKI, SIRT1 activity was reduced and PGC-1α expression was inhibited. Moreover, SIRT1-PGC-1α signaling pathway played a protective role in pathogenesis of LC complicated with AKI.


2019 ◽  
Vol 133 (3) ◽  
pp. 531-544 ◽  
Author(s):  
Tzu-Hao Li ◽  
Ying-Ying Yang ◽  
Chia-Chang Huang ◽  
Chih-Wei Liu ◽  
Hung-Cheng Tsai ◽  
...  

Abstract Background: Reversal of alcohol-induced peroxisome proliferator-activated receptor (PPAR) α (PPARα) and PPARδ dysfunction has been reported to decrease the severity of alcoholic steatohepatitis (ASH). Autophagy is essential for cell survival and tissue energy homeostasis. Emerging evidence indicates that alcohol-induced adipose tissue (AT) autophagy dysfunction contributes to injury in the intestine, liver, and AT of ASH. Methods: The effects and mechanisms of dual PPARα/δ agonist elafibranor on autophagy stimulation were investigated using mice with ASH. Results: C57BL/6 mice on ethanol diet showed AT dysfunction, disrupted intestinal barrier, and ASH, which was accompanied by alcohol-mediated decrease in PPARα, PPARδ, and autophagy levels in intestine, liver, and AT. Chronic treatment with elafibranor attenuated AT apoptosis and inflammation by restoration of tissue PPARα, PPARδ, and autophagy levels. In ASH mice, alcohol-induced AT dysfunction along with increased fatty acid (FA) uptake and decreased free FA (FFA) release from AT was inhibited by elafibranor. The improvement of AT autophagy dysfunction by elafibranor alleviated inflammation and apoptosis-mediated intestinal epithelial disruption in ASH mice. Acute elafibranor incubation inhibited ethanol-induced ASH-mice-sera-enhanced autophagy dysfunction, apoptosis, barrier disruption, and intracellular steatosis in Caco-2 cells and primary hepatocytes (PHs). Conclusion: Altogether, these findings demonstrated that the PPARα/δ agonist, elafibranor, decreased the severity of liver injury by restoration of alcohol-suppressed AT autophagy function and by decreasing the release of apoptotic markers, inflammatory cytokines, and FFA, thereby reducing intestinal epithelium disruption and liver inflammation/apoptosis/steatosis in ASH mice. These data suggest that dual PPAR agonists can serve as potential therapeutic agents for the management of ASH.


Sign in / Sign up

Export Citation Format

Share Document