scholarly journals Functional Differentiation of SWI/SNF Remodelers in Transcription and Cell Cycle Control

2006 ◽  
Vol 27 (2) ◽  
pp. 651-661 ◽  
Author(s):  
Yuri M. Moshkin ◽  
Lisette Mohrmann ◽  
Wilfred F. J. van Ijcken ◽  
C. Peter Verrijzer

ABSTRACT Drosophila BAP and PBAP represent two evolutionarily conserved subclasses of SWI/SNF chromatin remodelers. The two complexes share the same core subunits, including the BRM ATPase, but differ in a few signature subunits: OSA defines BAP, whereas Polybromo (PB) and BAP170 specify PBAP. Here, we present a comprehensive structure-function analysis of BAP and PBAP. An RNA interference knockdown survey revealed that the core subunits BRM and MOR are critical for the structural integrity of both complexes. Whole-genome expression profiling suggested that the SWI/SNF core complex is largely dysfunctional in cells. Regulation of the majority of target genes required the signature subunit OSA, PB, or BAP170, suggesting that SWI/SNF remodelers function mostly as holoenzymes. BAP and PBAP execute similar, independent, or antagonistic functions in transcription control and appear to direct mostly distinct biological processes. BAP, but not PBAP, is required for cell cycle progression through mitosis. Because in yeast the PBAP-homologous complex, RSC, controls cell cycle progression, our finding reveals a functional switch during evolution. BAP mediates G2/M transition through direct regulation of string/cdc25. Its signature subunit, OSA, is required for directing BAP to the string/cdc25 promoter. Our results suggest that the core subunits play architectural and enzymatic roles but that the signature subunits determine most of the functional specificity of SWI/SNF holoenzymes in general gene control.

2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Yiming He ◽  
Mingxi Gan ◽  
Yanan Wang ◽  
Tong Huang ◽  
Jianbin Wang ◽  
...  

AbstractGrainyhead-like 1 (GRHL1) is a transcription factor involved in embryonic development. However, little is known about the biological functions of GRHL1 in cancer. In this study, we found that GRHL1 was upregulated in non-small cell lung cancer (NSCLC) and correlated with poor survival of patients. GRHL1 overexpression promoted the proliferation of NSCLC cells and knocking down GRHL1 inhibited the proliferation. RNA sequencing showed that a series of cell cycle-related genes were altered when knocking down GRHL1. We further demonstrated that GRHL1 could regulate the expression of cell cycle-related genes by binding to the promoter regions and increasing the transcription of the target genes. Besides, we also found that EGF stimulation could activate GRHL1 and promoted its nuclear translocation. We identified the key phosphorylation site at Ser76 on GRHL1 that is regulated by the EGFR-ERK axis. Taken together, these findings elucidate a new function of GRHL1 on regulating the cell cycle progression and point out the potential role of GRHL1 as a drug target in NSCLC.


2018 ◽  
Vol 38 (17) ◽  
Author(s):  
Shakhawoat Hossain ◽  
Hiroaki Iwasa ◽  
Aradhan Sarkar ◽  
Junichi Maruyama ◽  
Kyoko Arimoto-Matsuzaki ◽  
...  

ABSTRACT RASSF6 is a member of the tumor suppressor Ras association domain family (RASSF) proteins. RASSF6 is frequently suppressed in human cancers, and its low expression level is associated with poor prognosis. RASSF6 regulates cell cycle arrest and apoptosis and plays a tumor suppressor role. Mechanistically, RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. However, RASSF6 also induces cell cycle arrest and apoptosis in a p53-negative background, which implies that the tumor suppressor function of RASSF6 does not depend solely on p53. In this study, we revealed that RASSF6 mediates cell cycle arrest and apoptosis via pRb. RASSF6 enhances the interaction between pRb and protein phosphatase. RASSF6 also enhances P16INK4A and P14ARF expression by suppressing BMI1. In this way, RASSF6 increases unphosphorylated pRb and augments the interaction between pRb and E2F1. Moreover, RASSF6 induces TP73 target genes via pRb and E2F1 in a p53-negative background. Finally, we confirmed that RASSF6 depletion induces polyploid cells in p53-negative HCT116 cells. In conclusion, RASSF6 behaves as a tumor suppressor in cancers with loss of function of p53, and pRb is implicated in this function of RASSF6.


Oncogene ◽  
2003 ◽  
Vol 22 (23) ◽  
pp. 3645-3654 ◽  
Author(s):  
Asra Mirza ◽  
Qun Wu ◽  
Luquan Wang ◽  
Terri McClanahan ◽  
W Robert Bishop ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1322-1322
Author(s):  
Wei Du ◽  
Yun Zhou ◽  
Suzette Pike ◽  
Qishen Pang

Abstract An elevated level of nucleophosmin (NPM) is often found in actively proliferative cells including human tumors. To identify the regulatory role for NPM phosphorylation in proliferation and cell cycle control, a series of mutants targeting the consensus cyclin-dependent kinase (CKD) phosphorylation sites was created to mimic or abrogate either single-site or multi-site phosphorylation. Cells expressing the phosphomimetic NPM mutants showed enhanced proliferation and G2/M cell-cycle transition; whereas nonphosphorylatable mutants induced G2/M cell-cycle arrest. Simultaneous inactivation of two CKD phosphorylation sites at Ser10 and Ser70 (S10A/S70A, NPM-AA) induced phosphorylation of Cdk1 at Tyr15 (Cdc2Tyr15) and increased cytoplasmic accumulation of Cdc25C. Strikingly, stress-induced Cdk1Tyr15 and Cdc25C sequestration were completely suppressed by expression of a double phosphomimetic NPM mutant (S10E/S70E, NPM-EE). Further analysis revealed that phosphorylation of NPM at both Ser10 and Ser70 sites were required for proper interaction between Cdk1 and Cdc25C in mitotic cells. Moreover, the NPM-EE mutant directly bound to Cdc25C and prevented phosphorylation of Cdc25C at Ser216 during mitosis. Finally, NPM-EE overrided stress-induced G2/M arrest, increased peripheral-blood blasts and splenomegaly in a NOD/SCID xenograft model, and promoted leukemia development in Fanconi mouse hematopoietic stem/progenitor cells. Thus, these findings reveal a novel function of NPM on regulation of cell-cycle progression, in which Cdk1-dependent phosphorylation of NPM controls cell-cycle progression at G2/M transition through modulation of Cdc25C activity.


2006 ◽  
Vol 173 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Daniela Dorner ◽  
Sylvia Vlcek ◽  
Nicole Foeger ◽  
Andreas Gajewski ◽  
Christian Makolm ◽  
...  

Lamina-associated polypeptide (LAP) 2α is a nonmembrane-bound LAP2 isoform that forms complexes with nucleoplasmic A-type lamins. In this study, we show that the overexpression of LAP2α in fibroblasts reduced proliferation and delayed entry into the cell cycle from a G0 arrest. In contrast, stable down-regulation of LAP2α by RNA interference accelerated proliferation and interfered with cell cycle exit upon serum starvation. The LAP2α-linked cell cycle phenotype is mediated by the retinoblastoma (Rb) protein because the LAP2α COOH terminus directly bound Rb, and overexpressed LAP2α inhibited E2F/Rb-dependent reporter gene activity in G1 phase in an Rb-dependent manner. Furthermore, LAP2α associated with promoter sequences in endogenous E2F/Rb-dependent target genes in vivo and negatively affected their expression. In addition, the expression of LAP2α in proliferating preadipocytes caused the accumulation of hypophosphorylated Rb, which is reminiscent of noncycling cells, and initiated partial differentiation into adipocytes. The effects of LAP2α on cell cycle progression and differentiation may be highly relevant for the cell- and tissue-specific phenotypes observed in laminopathic diseases.


2018 ◽  
Author(s):  
Shakhawoat Hossain ◽  
Hiroaki Iwasa ◽  
Aradhan Sarkar ◽  
Junichi Maruyama ◽  
Kyoko Arimoto-Matsuzaki ◽  
...  

ABSTRACTRASSF6 is a member of the tumor suppressor Ras-association domain family (RASSF) proteins. RASSF6 is frequently suppressed in human cancers and its low expression is associated with poor prognosis. RASSF6 regulates cell cycle arrest and apoptosis and plays a tumor suppressor role. Mechanistically, RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. However, RASSF6 also induces cell cycle arrest and apoptosis in the p53-negative background, which implies that the tumor suppressor function of RASSF6 does not depend solely on p53. In this study, we have revealed that RASSF6 mediates cell cycle arrest and apoptosis via pRb. RASSF6 enhances the interaction between pRb and protein phosphatase. RASSF6 also enhances P16INK4A and P14ARF expression through suppressing BMI1. In this way, RASSF6 increases unphosphorylated pRb and augments the interaction between pRb and E2F1. Moreover, RASSF6 induces TP73-target genes via pRb and E2F1 in the p53-negative background. Finally, we confirmed that RASSF6 depletion induces polypoid cells in p53-negative HCT116 cells. In conclusion, RASSF6 behaves as a tumor suppressor in cancers with the loss-of-function of p53, and pRb is implicated in this function of RASSF6.


2021 ◽  
Vol 10 ◽  
Author(s):  
Jing Xu ◽  
Lei Liu ◽  
Ranran Ma ◽  
Yawen Wang ◽  
Xu Chen ◽  
...  

ObjectiveThe aim of this study was to investigate the role of KIF26A in breast cancer.MethodqRT-PCR and immunohistochemistry were conducted to explore KIF26A expression and functional contribution to breast cancer development. MTS, EDU, colony formation assays, and flow cytometry analysis were conducted to assess cell proliferation characteristics and cell cycle progression. A series of 5′-flanking region deletion plasmids and mutating the binding site, with the luciferase reporter assay, were used to identify the core promotor region of KIF26A. The prediction by software and construction of the transcriptional factor plasmids were used to identify the transcriptional factor. Chromatin immunoprecipitation assay could demonstrate transcriptional factor directly binding to the KIF26A promoter. Human Genome Oligo Microarray Assay and gene ontology (GO) and pathway analyses were used to predict the downstream pathway.ResultsOur results showed that in breast cancer tissues, elevated KIF26A expression was significantly correlated with lymph node metastasis. KIF26A could promote proliferation and G0/G1 phase cell cycle progression in breast cancer cells. The core promoter region of the human KIF26A gene was located upstream of the transcription start site at position −395 to −385. The transcriptional factor E2F1 was shown to activate KIF26A expression. Furthermore, KIF26A was shown to inhibit the expression of p21, then activate CDK–RB–E2Fs pathway. The elevated E2F1 can activate the cell cycle progression and the KIF26A expression, forming feedback loop.ConclusionsThe present study demonstrated that KIF26A, directly upregulated by E2F1, promoted cell proliferation and cell cycle progression via CDK–RB–E2Fs feedback loop in breast cancer.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 881-881
Author(s):  
Hee-Don Chae ◽  
Bryan Mitton ◽  
Kathleen Sakamoto

Abstract CREB (cAMP Response Element Binding protein) is a transcription factor overexpressed in normal and neoplastic myelopoiesis and regulates cell cycle progression, although its oncogenic mechanism has not been well characterized. Replication Factor C3 (RFC3), a 38 kDa subunit of the RFC complex, is required for chromatin loading of proliferating cell nuclear antigen (PCNA) which is a sliding clamp platform for recruiting numerous proteins in DNA replication and repair processes. CREB1 expression was coupled with RFC3 expression during the G1/S progression in the KG-1 acute myeloid leukemia (AML) cell line, suggesting that RFC3 and CREB1 might be target genes of E2F, a key transcriptional regulator of the G1/S progression. Though there were two potential E2F binding sites in the RFC3 promoter region, chromatin immunoprecipitation assays provided no evidence for E2F1 binding to the RFC3 promoter, whereas E2F1 could directly act on the CREB1 expression. Treatment with the cyclin-dependent kinase (CDK) inhibitor AT7519 decreased expression of CREB1 and RFC3 as well as well-known E2F target genes such as CCNE1, CCNA2 and CCNB1 in KG-1 cells. These results indicate that CREB1 overexpression, a potentially important prognostic marker in leukemia patients, may be associated with dysregulated CDK-E2F activity in leukemia. There was also a direct correlation between the expression of RFC3 and CREB1 in human AML cell lines as well as in AML cells from patients. CREB interacted directly with the CRE site in RFC3 promoter region. CREB knockdown primarily inhibited G1/S cell cycle transition, decreasing expression of RFC3 as well as PCNA loading onto chromatin. Exogenous expression of RFC3 was sufficient to rescue the impaired G1/S progression and PCNA chromatin loading [Chromatin-bound PCNA-positive cells (%), control vs. CREB-knockdown vs. CREB-knockdown with RFC3 overexpression, 8h after release from mitotic arrest: 66.87 +/– 0.90 vs. 24.77 +/– 0.99 vs. 79.17 +/– 0.12, n=3, p< 0.01, mean +/– SEM] caused by CREB knockdown. Taken together, our results suggest that RFC3 may play a role in neoplastic myelopoiesis by promoting the G1/S progression, and its expression is regulated by CREB. These data provide new insight into CREB-driven regulation of the cell cycle in AML cells, and may contribute to leukemogenesis associated with CREB overexpression. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 21 (3) ◽  
pp. 709
Author(s):  
Javier Manzano-López ◽  
Fernando Monje-Casas

The Cdc14 phosphatase is a key regulator of mitosis in the budding yeast Saccharomyces cerevisiae. Cdc14 was initially described as playing an essential role in the control of cell cycle progression by promoting mitotic exit on the basis of its capacity to counteract the activity of the cyclin-dependent kinase Cdc28/Cdk1. A compiling body of evidence, however, has later demonstrated that this phosphatase plays other multiple roles in the regulation of mitosis at different cell cycle stages. Here, we summarize our current knowledge about the pivotal role of Cdc14 in cell cycle control, with a special focus in the most recently uncovered functions of the phosphatase.


Sign in / Sign up

Export Citation Format

Share Document