scholarly journals The Multiple Roles of the Cdc14 Phosphatase in Cell Cycle Control

2020 ◽  
Vol 21 (3) ◽  
pp. 709
Author(s):  
Javier Manzano-López ◽  
Fernando Monje-Casas

The Cdc14 phosphatase is a key regulator of mitosis in the budding yeast Saccharomyces cerevisiae. Cdc14 was initially described as playing an essential role in the control of cell cycle progression by promoting mitotic exit on the basis of its capacity to counteract the activity of the cyclin-dependent kinase Cdc28/Cdk1. A compiling body of evidence, however, has later demonstrated that this phosphatase plays other multiple roles in the regulation of mitosis at different cell cycle stages. Here, we summarize our current knowledge about the pivotal role of Cdc14 in cell cycle control, with a special focus in the most recently uncovered functions of the phosphatase.

2017 ◽  
Vol 28 (13) ◽  
pp. 1738-1744 ◽  
Author(s):  
Gabor Banyai ◽  
Zsolt Szilagyi ◽  
Vera Baraznenok ◽  
Olga Khorosjutina ◽  
Claes M. Gustafsson

The multiprotein Mediator complex is required for the regulated transcription of nearly all RNA polymerase II–dependent genes. Mediator contains the Cdk8 regulatory subcomplex, which directs periodic transcription and influences cell cycle progression in fission yeast. Here we investigate the role of CycC, the cognate cyclin partner of Cdk8, in cell cycle control. Previous reports suggested that CycC interacts with other cellular Cdks, but a fusion of CycC to Cdk8 reported here did not cause any obvious cell cycle phenotypes. We find that Cdk8 and CycC interactions are stabilized within the Mediator complex and the activity of Cdk8-CycC is regulated by other Mediator components. Analysis of a mutant yeast strain reveals that CycC, together with Cdk8, primarily affects M-phase progression but mutations that release Cdk8 from CycC control also affect timing of entry into S phase.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi33-vi33
Author(s):  
Norihiko Saito ◽  
Nozomi Hirai ◽  
Kazuya Aoki ◽  
Sho Sato ◽  
Ryo Suzuki ◽  
...  

Abstract Oligodendrocyte transcription factor 2 (OLIG2) promotes proliferation of normal neural stem/progenitor cells and glioma cells. However, the mechanisms underlying the regulation of OLIG2 remain largely unknown. Here we identified OLIG2 as a critical phosphorylation target for cyclin-dependent kinase 2 (CDK2). CDK2-mediated OLIG2 phosphorylation stabilizes OLIG2 protein from proteasomal degradation. Phosphorylated OLIG2 binds to the E-Box regions of p27 promoter and represses p27 transcription, which in turn activates CDK2 in positive feedback manner. CDK2-mediated OLIG2 phosphorylation promotes cell cycle progression, cell proliferation, and tumorigenesis. OLIG2 inhibition disrupted cell cycle control mechanism by decreasing CDK2 and elevating apoptosis-related molecules. Inhibition of CDK2 activity disrupted OLIG2-CDK2 interactions and attenuated OLIG2 protein stability. In addition, OLIG2-high glioma initiating cells are highly sensitive to CDK2 inhibitor treatment, indicating that OLIG2 can be a biomarker for personalized treatment for glioblastoma patients with CDK2 inhibitors. Further investigation on these mechanisms may lead to novel targeted therapy on GBMs with high OLIG2 expression.


Genetics ◽  
1999 ◽  
Vol 153 (3) ◽  
pp. 1171-1182
Author(s):  
Ann E Ehrenhofer-Murray ◽  
Rohinton T Kamakaka ◽  
Jasper Rine

Abstract Transcriptional silencing in the budding yeast Saccharomyces cerevisiae may be linked to DNA replication and cell cycle progression. In this study, we have surveyed the effect of 41 mutations in genes with a role in replication, the cell cycle, and DNA repair on silencing at HMR. Mutations in PCNA (POL30), RF-C (CDC44), polymerase ε (POL2, DPB2, DPB11), and CDC45 were found to restore silencing at a mutant HMR silencer allele that was still a chromosomal origin of replication. Replication timing experiments indicated that the mutant HMR locus was replicated late in S-phase, at the same time as wild-type HMR. Restoration of silencing by PCNA and CDC45 mutations required the origin recognition complex binding site of the HMR-E silencer. Several models for the precise role of these replication proteins in silencing are discussed.


2011 ◽  
Vol 2011 ◽  
pp. 1-8
Author(s):  
Jacek Z. Kubiak ◽  
Mohammed El Dika

Cyclin-Dependent Kinase 1 (CDK1) is the major M-phase kinase known also as the M-phase Promoting Factor or MPF. Studies performed during the last decade have shown many details of how CDK1 is regulated and also how it regulates the cell cycle progression. Xenopus laevis cell-free extracts were widely used to elucidate the details and to obtain a global view of the role of CDK1 in M-phase control. CDK1 inactivation upon M-phase exit is a primordial process leading to the M-phase/interphase transition during the cell cycle. Here we discuss two closely related aspects of CDK1 regulation in Xenopus laevis cell-free extracts: firstly, how CDK1 becomes inactivated and secondly, how other actors, like kinases and phosphatases network and/or specific inhibitors, cooperate with CDK1 inactivation to assure timely exit from the M-phase.


2002 ◽  
Vol 115 (11) ◽  
pp. 2265-2270 ◽  
Author(s):  
Danièle Hernandez-Verdun ◽  
Pascal Roussel ◽  
Jeannine Gébrane-Younès

The nucleolus is a large nuclear domain and the site of ribosome biogenesis. It is also at the parting of the ways of several cellular processes, including cell cycle progression, gene silencing, and ribonucleoprotein complex formation. Consequently, a functional nucleolus is crucial for cell survival. Recent investigations of nucleolar assembly during the cell cycle and during embryogenesis have provided an integrated view of the dynamics of this process. Moreover, they have generated new ideas about cell cycle control of nucleolar assembly, the dynamics of the delivery of the RNA processing machinery, the formation of prenucleolar bodies, the role of precursor ribosomal RNAs in stabilizing the nucleolar machinery and the fact that nucleolar assembly is completed by cooperative interactions between chromosome territories. This has opened a new area of research into the dynamics of nuclear organization and the integration of nuclear functions.


2019 ◽  
Vol 26 (11) ◽  
pp. 800-818
Author(s):  
Zujian Xiong ◽  
Xuejun Li ◽  
Qi Yang

Pituitary Tumor Transforming Gene (PTTG) of human is known as a checkpoint gene in the middle and late stages of mitosis, and is also a proto-oncogene that promotes cell cycle progression. In the nucleus, PTTG works as securin in controlling the mid-term segregation of sister chromatids. Overexpression of PTTG, entering the nucleus with the help of PBF in pituitary adenomas, participates in the regulation of cell cycle, interferes with DNA repair, induces genetic instability, transactivates FGF-2 and VEGF and promotes angiogenesis and tumor invasion. Simultaneously, overexpression of PTTG induces tumor cell senescence through the DNA damage pathway, making pituitary adenoma possessing the potential self-limiting ability. To elucidate the mechanism of PTTG in the regulation of pituitary adenomas, we focus on both the positive and negative function of PTTG and find out key factors interacted with PTTG in pituitary adenomas. Furthermore, we discuss other possible mechanisms correlate with PTTG in pituitary adenoma initiation and development and the potential value of PTTG in clinical treatment.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 995
Author(s):  
Xiaoyan Hou ◽  
Lijun Qiao ◽  
Ruijuan Liu ◽  
Xuechao Han ◽  
Weifang Zhang

Persistent infection of high-risk human papillomavirus (HR-HPV) plays a causal role in cervical cancer. Regulator of chromosome condensation 1 (RCC1) is a critical cell cycle regulator, which undergoes a few post-translational modifications including phosphorylation. Here, we showed that serine 11 (S11) of RCC1 was phosphorylated in HPV E7-expressing cells. However, S11 phosphorylation was not up-regulated by CDK1 in E7-expressing cells; instead, the PI3K/AKT/mTOR pathway promoted S11 phosphorylation. Knockdown of AKT or inhibition of the PI3K/AKT/mTOR pathway down-regulated phosphorylation of RCC1 S11. Furthermore, S11 phosphorylation occurred throughout the cell cycle, and reached its peak during the mitosis phase. Our previous data proved that RCC1 was necessary for the G1/S cell cycle progression, and in the present study we showed that the RCC1 mutant, in which S11 was mutated to alanine (S11A) to mimic non-phosphorylation status, lost the ability to facilitate G1/S transition in E7-expressing cells. Moreover, RCC1 S11 was phosphorylated by the PI3K/AKT/mTOR pathway in HPV-positive cervical cancer SiHa and HeLa cells. We conclude that S11 of RCC1 is phosphorylated by the PI3K/AKT/mTOR pathway and phosphorylation of RCC1 S11 facilitates the abrogation of G1 checkpoint in HPV E7-expressing cells. In short, our study explores a new role of RCC1 S11 phosphorylation in cell cycle regulation.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Yiming He ◽  
Mingxi Gan ◽  
Yanan Wang ◽  
Tong Huang ◽  
Jianbin Wang ◽  
...  

AbstractGrainyhead-like 1 (GRHL1) is a transcription factor involved in embryonic development. However, little is known about the biological functions of GRHL1 in cancer. In this study, we found that GRHL1 was upregulated in non-small cell lung cancer (NSCLC) and correlated with poor survival of patients. GRHL1 overexpression promoted the proliferation of NSCLC cells and knocking down GRHL1 inhibited the proliferation. RNA sequencing showed that a series of cell cycle-related genes were altered when knocking down GRHL1. We further demonstrated that GRHL1 could regulate the expression of cell cycle-related genes by binding to the promoter regions and increasing the transcription of the target genes. Besides, we also found that EGF stimulation could activate GRHL1 and promoted its nuclear translocation. We identified the key phosphorylation site at Ser76 on GRHL1 that is regulated by the EGFR-ERK axis. Taken together, these findings elucidate a new function of GRHL1 on regulating the cell cycle progression and point out the potential role of GRHL1 as a drug target in NSCLC.


2021 ◽  
Vol 7 (23) ◽  
pp. eabg0007
Author(s):  
Deniz Pirincci Ercan ◽  
Florine Chrétien ◽  
Probir Chakravarty ◽  
Helen R. Flynn ◽  
Ambrosius P. Snijders ◽  
...  

Two models have been put forward for cyclin-dependent kinase (Cdk) control of the cell cycle. In the qualitative model, cell cycle events are ordered by distinct substrate specificities of successive cyclin waves. Alternatively, in the quantitative model, the gradual rise of Cdk activity from G1 phase to mitosis leads to ordered substrate phosphorylation at sequential thresholds. Here, we study the relative contributions of qualitative and quantitative Cdk control in Saccharomyces cerevisiae. All S phase and mitotic cyclins can be replaced by a single mitotic cyclin, albeit at the cost of reduced fitness. A single cyclin can also replace all G1 cyclins to support ordered cell cycle progression, fulfilling key predictions of the quantitative model. However, single-cyclin cells fail to polarize or grow buds and thus cannot survive. Our results suggest that budding yeast has become dependent on G1 cyclin specificity to couple cell cycle progression to essential morphogenetic events.


2001 ◽  
Vol 114 (10) ◽  
pp. 1811-1820 ◽  
Author(s):  
M.E. Miller ◽  
F.R. Cross

Cyclin-dependent kinase (CDK) activity is essential for eukaryotic cell cycle events. Multiple cyclins activate CDKs in all eukaryotes, but it is unclear whether multiple cyclins are really required for cell cycle progression. It has been argued that cyclins may predominantly act as simple enzymatic activators of CDKs; in opposition to this idea, it has been argued that cyclins might target the activated CDK to particular substrates or inhibitors. Such targeting might occur through a combination of factors, including temporal expression, protein associations, and subcellular localization.


Sign in / Sign up

Export Citation Format

Share Document