scholarly journals Retrovirus-induced interference with collagen I gene expression in Mov13 fibroblasts is maintained in the absence of DNA methylation.

1991 ◽  
Vol 11 (1) ◽  
pp. 47-54 ◽  
Author(s):  
H Chan ◽  
S Hartung ◽  
M Breindl

We have studied the role of DNA methylation in repression of the murine alpha 1 type I collagen (COL1A1) gene in Mov13 fibroblasts. In Mov13 mice, a retroviral provirus has inserted into the first intron of the COL1A1 gene and blocks its expression at the level of transcriptional initiation. We found that regulatory sequences in the COL1A1 promoter region that are involved in the tissue-specific regulation of the gene are unmethylated in collagen-expressing wild-type fibroblasts and methylated in Mov13 fibroblasts, confirming and extending earlier observations. To directly assess the role of DNA methylation in the repression of COL1A1 gene transcription, we treated Mov13 fibroblasts with the demethylating agent 5-azacytidine. This treatment resulted in a demethylation of the COL1A1 regulatory sequences but failed to activate transcription of the COL1A1 gene. Moreover, the 5-azacytidine treatment induced a transcription-competent chromatin structure in the retroviral sequences but not in the COL1A1 promoter. In DNA transfection and microinjection experiments, we found that the provirus interfered with transcriptional activity of the COL1A1 promoter in Mov13 fibroblasts but not in Xenopus laevis oocytes. In contrast, the wild-type COL1A1 promoter was transcriptionally active in Mov13 fibroblasts. These experiments showed that the COL1A1 promoter is potentially transcriptionally active in the presence of proviral sequences and that Mov13 fibroblasts contain the trans-acting factors required for efficient COL1A1 gene expression. Our results indicate that the provirus insertion in Mov13 can inactivate COL1A1 gene expression at several levels. It prevents the developmentally regulated establishment of a transcription-competent methylation pattern and chromatin structure of the COL1A1 domain and, in the absence of DNA methylation, appears to suppress the COL1A1 promoter in a cell-specific manner, presumably by assuming a dominant chromatin structure that may be incompatible with transcriptional activity of flanking cellular sequences.

1991 ◽  
Vol 11 (1) ◽  
pp. 47-54
Author(s):  
H Chan ◽  
S Hartung ◽  
M Breindl

We have studied the role of DNA methylation in repression of the murine alpha 1 type I collagen (COL1A1) gene in Mov13 fibroblasts. In Mov13 mice, a retroviral provirus has inserted into the first intron of the COL1A1 gene and blocks its expression at the level of transcriptional initiation. We found that regulatory sequences in the COL1A1 promoter region that are involved in the tissue-specific regulation of the gene are unmethylated in collagen-expressing wild-type fibroblasts and methylated in Mov13 fibroblasts, confirming and extending earlier observations. To directly assess the role of DNA methylation in the repression of COL1A1 gene transcription, we treated Mov13 fibroblasts with the demethylating agent 5-azacytidine. This treatment resulted in a demethylation of the COL1A1 regulatory sequences but failed to activate transcription of the COL1A1 gene. Moreover, the 5-azacytidine treatment induced a transcription-competent chromatin structure in the retroviral sequences but not in the COL1A1 promoter. In DNA transfection and microinjection experiments, we found that the provirus interfered with transcriptional activity of the COL1A1 promoter in Mov13 fibroblasts but not in Xenopus laevis oocytes. In contrast, the wild-type COL1A1 promoter was transcriptionally active in Mov13 fibroblasts. These experiments showed that the COL1A1 promoter is potentially transcriptionally active in the presence of proviral sequences and that Mov13 fibroblasts contain the trans-acting factors required for efficient COL1A1 gene expression. Our results indicate that the provirus insertion in Mov13 can inactivate COL1A1 gene expression at several levels. It prevents the developmentally regulated establishment of a transcription-competent methylation pattern and chromatin structure of the COL1A1 domain and, in the absence of DNA methylation, appears to suppress the COL1A1 promoter in a cell-specific manner, presumably by assuming a dominant chromatin structure that may be incompatible with transcriptional activity of flanking cellular sequences.


2019 ◽  
Vol 317 (1) ◽  
pp. H168-H180 ◽  
Author(s):  
Ali M. Tabish ◽  
Mohammed Arif ◽  
Taejeong Song ◽  
Zaher Elbeck ◽  
Richard C. Becker ◽  
...  

In this study, we investigated the role of DNA methylation [5-methylcytosine (5mC)] and 5-hydroxymethylcytosine (5hmC), epigenetic modifications that regulate gene activity, in dilated cardiomyopathy (DCM). A MYBPC3 mutant mouse model of DCM was compared with wild type and used to profile genomic 5mC and 5hmC changes by Chip-seq, and gene expression levels were analyzed by RNA-seq. Both 5mC-altered genes (957) and 5hmC-altered genes (2,022) were identified in DCM hearts. Diverse gene ontology and KEGG pathways were enriched for DCM phenotypes, such as inflammation, tissue fibrosis, cell death, cardiac remodeling, cardiomyocyte growth, and differentiation, as well as sarcomere structure. Hierarchical clustering of mapped genes affected by 5mC and 5hmC clearly differentiated DCM from wild-type phenotype. Based on these data, we propose that genomewide 5mC and 5hmC contents may play a major role in DCM pathogenesis. NEW & NOTEWORTHY Our data demonstrate that development of dilated cardiomyopathy in mice is associated with significant epigenetic changes, specifically in intronic regions, which, when combined with gene expression profiling data, highlight key signaling pathways involved in pathological cardiac remodeling and heart contractile dysfunction.


2021 ◽  
Vol 19 (2) ◽  
pp. 2095-2119
Author(s):  
Heli Tan ◽  
◽  
Tuoqi Liu ◽  
Tianshou Zhou ◽  
◽  
...  

<abstract> <p>eRNAs as the products of enhancers can regulate gene expression via various possible ways, but which regulation way is more reasonable is debatable in biology, and in particular, how eRNAs impact gene expression remains unclear. Here we introduce a mechanistic model of gene expression to address these issues. This model considers three possible regulation ways of eRNA: Type-I by which eRNA regulates transcriptional activity by facilitating the formation of enhancer-promoter (E-P) loop, Type-II by which eRNA directly promotes the mRNA production rate, and mixed regulation (i.e., the combination of Type-I and Type-II). We show that with the increase of the E-P loop length, mRNA distribution can transition from unimodality to bimodality or vice versa in all the three regulation cases. However, in contrast to the other two regulations, Type-II regulation can lead to the highest mean mRNA level and the lowest mRNA noise, independent of the E-P loop length. These results would not only reveal the essential mechanism of how eRNA regulates gene expression, but also imply a new mechanism for phenotypic switching, namely the E-P loop can induce phenotypic switching.</p> </abstract>


2020 ◽  
Author(s):  
Diana Buitrago ◽  
Mireia Labrador ◽  
Juan Pablo Arcon ◽  
Rafael Lema ◽  
Oscar Flores ◽  
...  

Abstract The extreme complexity of epigenetic regulation in higher organisms makes the determination of the intrinsic effect of DNA methylation in chromatin structure and function challenging. We investigated the role of DNA methylation in a simpler model system, budding yeast (Saccharomyces cerevisiae), an organism in which methylation-related machinery is normally absent thus making it a perfect model system to study the intrinsic role of methylation in chromatin structure and function. With this aim, we expressed the murine DNA Methyl Transferases in S. cerevisiae and analyzed the correlation between DNA methylation, nucleosome positioning, gene expression and 3D genome organization. We showed that despite the lack of machinery for positioning and reading of methylation marks, the methylation pattern follows a conserved pattern, the level of DNA methylation being very low at the 5’ end of the gene, and then increasing gradually toward the 3’ end, mimicking mammalian behavior. DNA methylation and gene expression correlate as DNA methylation is lower at the TSS and higher at the TTS in highly expressed genes compared to lowly expressed ones, mimicking again mammalian behavior. We found that methylated DNA is unlikely to be wrapped around nucleosomes, but is concentrated in linkers and nucleosome free regions. DNA methylation increases chromatin condensation in the peri-centromeric region, decreases overall DNA flexibility and favors the heterochromatin state. Taken together, these results demonstrate that methylation intrinsically modulates chromatin structure and function even in the absence of cellular machinery evolved to recognize and process the methylation signal.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ian Edward Gentle ◽  
Isabel Moelter ◽  
Mohamed Tarek Badr ◽  
Konstanze Döhner ◽  
Michael Lübbert ◽  
...  

AbstractMutations in the transcription factor C/EBPα are found in ~10% of all acute myeloid leukaemia (AML) cases but the contribution of these mutations to leukemogenesis is incompletely understood. We here use a mouse model of granulocyte progenitors expressing conditionally active HoxB8 to assess the cell biological and molecular activity of C/EBPα-mutations associated with human AML. Both N-terminal truncation and C-terminal AML-associated mutations of C/EBPα substantially altered differentiation of progenitors into mature neutrophils in cell culture. Closer analysis of the C/EBPα-K313-duplication showed expansion and prolonged survival of mutant C/EBPα-expressing granulocytes following adoptive transfer into mice. C/EBPα-protein containing the K313-mutation further showed strongly enhanced transcriptional activity compared with the wild-type protein at certain promoters. Analysis of differentially regulated genes in cells overexpressing C/EBPα-K313 indicates a strong correlation with genes regulated by C/EBPα. Analysis of transcription factor enrichment in the differentially regulated genes indicated a strong reliance of SPI1/PU.1, suggesting that despite reduced DNA binding, C/EBPα-K313 is active in regulating target gene expression and acts largely through a network of other transcription factors. Strikingly, the K313 mutation caused strongly elevated expression of C/EBPα-protein, which could also be seen in primary K313 mutated AML blasts, explaining the enhanced C/EBPα activity in K313-expressing cells.


2021 ◽  
Vol 22 (12) ◽  
pp. 6197
Author(s):  
Paola Brivio ◽  
Giulia Sbrini ◽  
Letizia Tarantini ◽  
Chiara Parravicini ◽  
Piotr Gruca ◽  
...  

Epigenetics is one of the mechanisms by which environmental factors can alter brain function and may contribute to central nervous system disorders. Alterations of DNA methylation and miRNA expression can induce long-lasting changes in neurobiological processes. Hence, we investigated the effect of chronic stress, by employing the chronic mild stress (CMS) and the chronic restraint stress protocol, in adult male rats, on the glucocorticoid receptor (GR) function. We focused on DNA methylation specifically in the proximity of the glucocorticoid responsive element (GRE) of the GR responsive genes Gadd45β, Sgk1, and Gilz and on selected miRNA targeting these genes. Moreover, we assessed the role of the antipsychotic lurasidone in modulating these alterations. Chronic stress downregulated Gadd45β and Gilz gene expression and lurasidone normalized the Gadd45β modification. At the epigenetic level, CMS induced hypermethylation of the GRE of Gadd45β gene, an effect prevented by lurasidone treatment. These stress-induced alterations were still present even after a period of rest from stress, indicating the enduring nature of such changes. However, the contribution of miRNA to the alterations in gene expression was moderate in our experimental conditions. Our results demonstrated that chronic stress mainly affects Gadd45β expression and methylation, effects that are prolonged over time, suggesting that stress leads to changes in DNA methylation that last also after the cessation of stress procedure, and that lurasidone is a modifier of such mechanisms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anastasia Ricci ◽  
Sara Orazi ◽  
Federica Biancucci ◽  
Mauro Magnani ◽  
Michele Menotta

AbstractAtaxia telangiectasia (AT) is a rare genetic neurodegenerative disease. To date, there is no available cure for the illness, but the use of glucocorticoids has been shown to alleviate the neurological symptoms associated with AT. While studying the effects of dexamethasone (dex) in AT fibroblasts, by chance we observed that the nucleoplasmic Lamin A/C was affected by the drug. In addition to the structural roles of A-type lamins, Lamin A/C has been shown to play a role in the regulation of gene expression and cell cycle progression, and alterations in the LMNA gene is cause of human diseases called laminopathies. Dex was found to improve the nucleoplasmic accumulation of soluble Lamin A/C and was capable of managing the large chromatin Lamin A/C scaffolds contained complex, thus regulating epigenetics in treated cells. In addition, dex modified the interactions of Lamin A/C with its direct partners lamin associated polypeptide (LAP) 2a, Retinoblastoma 1 (pRB) and E2F Transcription Factor 1 (E2F1), regulating local gene expression dependent on E2F1. These effects were differentially observed in both AT and wild type (WT) cells. To our knowledge, this is the first reported evidence of the role of dex in Lamin A/C dynamics in AT cells, and may represent a new area of research regarding the effects of glucocorticoids on AT. Moreover, future investigations could also be extended to healthy subjects or to other pathologies such as laminopathies since glucocorticoids may have other important effects in these contexts as well.


2013 ◽  
Vol 87 (14) ◽  
pp. 7816-7827 ◽  
Author(s):  
R. Shivakoti ◽  
M. Siwek ◽  
D. Hauer ◽  
K. L. W. Schultz ◽  
D. E. Griffin

Sign in / Sign up

Export Citation Format

Share Document