scholarly journals A Binding Site for Multiple Transcriptional Activators in the fushi tarazu Proximal Enhancer Is Essential for Gene Expression In Vivo

1998 ◽  
Vol 18 (6) ◽  
pp. 3384-3394 ◽  
Author(s):  
Wei Han ◽  
Yan Yu ◽  
Kai Su ◽  
Ronald A. Kohanski ◽  
Leslie Pick

ABSTRACT The Drosophila homeobox gene fushi tarazu(ftz) is expressed in a highly dynamic striped pattern in early embryos. A key regulatory element that controls theftz pattern is the ftz proximal enhancer, which mediates positive autoregulation via multiple binding sites for the Ftz protein. In addition, the enhancer is necessary for stripe establishment prior to the onset of autoregulation. We previously identified nine binding sites for multiple Drosophilanuclear proteins in a core 323-bp region of the enhancer. Three of these nine sites interact with the same cohort of nuclear proteins in vitro. We showed previously that the nuclear receptor Ftz-F1 interacts with this repeated module. Here we purified additional proteins interacting with this module from Drosophila nuclear extracts. Peptide sequences of the zinc finger protein Ttk and the transcription factor Adf-1 were obtained. While Ttk is thought to be a repressor of ftz stripes, we have shown that both Adf-1 and Ftz-F1 activate transcription in a binding site-dependent fashion. These two proteins are expressed ubiquitously at the timeftz is expressed in stripes, suggesting that either may activate striped expression alone or in combination with the Ftz protein. The roles of the nine nuclear factor binding sites were tested in vivo, by site-directed mutagenesis of individual and multiple sites. The three Ftz-F1–Adf-1–Ttk binding sites were found to be functionally redundant and essential for stripe expression in transgenic embryos. Thus, a biochemical analysis identifiedcis-acting regulatory modules that are required for gene expression in vivo. The finding of repeated binding sites for multiple nuclear proteins underscores the high degree of redundancy built into embryonic gene regulatory networks.

1998 ◽  
Vol 180 (9) ◽  
pp. 2367-2372 ◽  
Author(s):  
Sudha A. Chugani ◽  
Matthew R. Parsek ◽  
A. M. Chakrabarty

ABSTRACT The catBCA operon of Pseudomonas putidaencodes enzymes involved in the catabolism of benzoate. Transcription of this operon requires the LysR-type transcriptional regulator CatR and an inducer molecule, cis,cis-muconate. Previous gel shift assays and DNase I footprinting have demonstrated that CatR occupies two adjacent sites proximal to thecatBCA promoter in the presence of the inducer. We report the presence of an additional binding site for CatR downstream of thecatBCA promoter within the catB structural gene. This site, called the internal binding site (IBS), extends from +162 to +193 with respect to the catB transcriptional start site and lies within the catB open reading frame. Gel shift analysis and DNase I footprinting determined that CatR binds to this site with low affinity. CatR binds cooperatively with higher affinity to the IBS in the presence of the two upstream binding sites. Parallel in vivo and in vitro studies were conducted to determine the role of the internal binding site. We measured β-galactosidase activity ofcatB-lacZ transcriptional fusions in vivo. Our results suggest a probable cis-acting repressor function for the internal binding site. Site-directed mutagenesis of the IBS verified this finding. The location of the IBS within the catBstructural gene, the cooperativity observed in footprinting studies, and phasing studies suggest that the IBS likely participates in the interaction of CatR with the upstream binding sites by looping out the intervening DNA.


2006 ◽  
Vol 17 (4) ◽  
pp. 1971-1984 ◽  
Author(s):  
Michael G. Clark ◽  
Joseph Teply ◽  
Brian K. Haarer ◽  
Susan C. Viggiano ◽  
David Sept ◽  
...  

Actin interacting protein 1 (Aip1p) and cofilin cooperate to disassemble actin filaments in vitro and are thought to promote rapid turnover of actin networks in vivo. The precise method by which Aip1p participates in these activities has not been defined, although severing and barbed-end capping of actin filaments have been proposed. To better describe the mechanisms and biological consequences of Aip1p activities, we undertook an extensive mutagenesis of AIP1 aimed at disrupting and mapping Aip1p interactions. Site-directed mutagenesis suggested that Aip1p has two actin binding sites, the primary actin binding site lies on the edge of its N-terminal β-propeller and a secondary actin binding site lies in a comparable location on its C-terminal β-propeller. Random mutagenesis followed by screening for separation of function mutants led to the identification of several mutants specifically defective for interacting with cofilin but still able to interact with actin. These mutants suggested that cofilin binds across the cleft between the two propeller domains, leaving the actin binding sites exposed and flanking the cofilin binding site. Biochemical, genetic, and cell biological analyses confirmed that the actin binding- and cofilin binding-specific mutants are functionally defective, whereas the genetic analyses further suggested a role for Aip1p in an early, internalization step of endocytosis. A complementary, unbiased molecular modeling approach was used to derive putative structures for the Aip1p-cofilin complex, the most stable of which is completely consistent with the mutagenesis data. We theorize that Aip1p-severing activity may involve simultaneous binding to two actin subunits with cofilin wedged between the two actin binding sites of the N- and C-terminal propeller domains.


Development ◽  
1998 ◽  
Vol 125 (22) ◽  
pp. 4349-4358 ◽  
Author(s):  
J. Charite ◽  
W. de Graaff ◽  
D. Consten ◽  
M.J. Reijnen ◽  
J. Korving ◽  
...  

Studies of pattern formation in the vertebrate central nervous system indicate that anteroposterior positional information is generated in the embryo by signalling gradients of an as yet unknown nature. We searched for transcription factors that transduce this information to the Hox genes. Based on the assumption that the activity levels of such factors might vary with position along the anteroposterior axis, we devised an in vivo assay to detect responsiveness of cis-acting sequences to such differentially active factors. We used this assay to analyze a Hoxb8 regulatory element, and detected the most pronounced response in a short stretch of DNA containing a cluster of potential CDX binding sites. We show that differentially expressed DNA binding proteins are present in gastrulating embryos that bind to these sites in vitro, that cdx gene products are among these, and that binding site mutations that abolish binding of these proteins completely destroy the ability of the regulatory element to drive regionally restricted expression in the embryo. Finally, we show that ectopic expression of cdx gene products anteriorizes expression of reporter transgenes driven by this regulatory element, as well as that of the endogenous Hoxb8 gene, in a manner that is consistent with them being essential transducers of positional information. These data suggest that, in contrast to Drosophila Caudal, vertebrate cdx gene products transduce positional information directly to the Hox genes, acting through CDX binding sites in their enhancers. This may represent the ancestral mode of action of caudal homologues, which are involved in anteroposterior patterning in organisms with widely divergent body plans and modes of development.


1992 ◽  
Vol 12 (9) ◽  
pp. 4093-4103
Author(s):  
D Falb ◽  
T Maniatis

Expression of the Drosophila melanogaster Adh gene in adults requires a fat body-specific enhancer called the Adh adult enhancer (AAE). We have identified a protein in Drosophila nuclear extracts that binds specifically to a site within the AAE (adult enhancer factor 1 [AEF-1]). In addition, we have shown that AEF-1 binds specifically to two other Drosophila fat body enhancers. Base substitutions in the AEF-1 binding site that disrupt AEF-1 binding in vitro result in a significant increase in the level of Adh expression in vivo. Thus, the AEF-1 binding site is a negative regulatory element within the AAE. A cDNA encoding the AEF-1 protein was isolated and shown to act as a repressor of the AAE in cotransfection studies. The AEF-1 protein contains four zinc fingers and an alanine-rich sequence. The latter motif is found in other eukaryotic proteins known to be transcriptional repressors.


1991 ◽  
Vol 11 (7) ◽  
pp. 3642-3651 ◽  
Author(s):  
C Devlin ◽  
K Tice-Baldwin ◽  
D Shore ◽  
K T Arndt

The major in vitro binding activity to the Saccharomyces cerevisiae HIS4 promoter is due to the RAP1 protein. In the absence of GCN4, BAS1, and BAS2, the RAP1 protein binds to the HIS4 promoter in vivo but cannot efficiently stimulate HIS4 transcription. RAP1, which binds adjacently to BAS2 on the HIS4 promoter, is required for BAS1/BAS2-dependent activation of HIS4 basal-level transcription. In addition, the RAP1-binding site overlaps with the single high-affinity HIS4 GCN4-binding site. Even though RAP1 and GCN4 bind competitively in vitro, RAP1 is required in vivo for (i) the normal steady-state levels of GCN4-dependent HIS4 transcription under nonstarvation conditions and (ii) the rapid increase in GCN4-dependent steady-state HIS4 mRNA levels following amino acid starvation. The presence of the RAP1-binding site in the HIS4 promoter causes a dramatic increase in the micrococcal nuclease sensitivity of two adjacent regions within HIS4 chromatin: one region contains the high-affinity GCN4-binding site, and the other region contains the BAS1- and BAS2-binding sites. These results suggest that RAP1 functions at HIS4 by increasing the accessibility of GCN4, BAS1, and BAS2 to their respective binding sites when these sites are present within chromatin.


2003 ◽  
Vol 284 (2) ◽  
pp. C528-C534 ◽  
Author(s):  
Shiuhyang Kuo ◽  
Ann L. Chokas ◽  
Richard J. Rogers ◽  
Harry S. Nick

Manganese superoxide dismutase (MnSOD) is a critical antioxidant enzyme that protects against superoxide anion generated as a consequence of normal cellular respiration, as well as during the inflammatory response. By employing dimethyl sulfate in vivo footprinting, we have previously identified ten basal protein binding sites within the MnSODpromoter. On the basis of consensus sequence comparison and in vitro footprinting data, one would predict that Sp1 might occupy five of these binding sites. To address these findings in the context of the nucleoprotein environment, we first utilized chromatin immunoprecipitation (ChIP) to demonstrate the nuclear association of Sp1 with the MnSOD promoter region. To identify the precise location of Sp1 binding, we have modified the original protein position identification with nuclease tail (PIN*POINT) methodology, providing an approach to establish both the identity and binding occupancy of Sp1 in the context of the endogenous MnSOD promoter. These data, coupled with site-directed mutagenesis, demonstrate the functional importance of two of the Sp1 binding sites in the stimulus-specific regulation of MnSOD gene expression. We feel that the combination of ChIP and PIN*POINT analysis allows unequivocal identification and localization of protein/DNA interactions in vivo, specifically the demonstration of Sp1 with the MnSODpromoter.


2008 ◽  
Vol 190 (20) ◽  
pp. 6769-6778 ◽  
Author(s):  
Britton Ranson-Olson ◽  
Jill H. Zeilstra-Ryalls

ABSTRACT Part of the oxygen responsiveness of Rhodobacter sphaeroides 2.4.1 tetrapyrrole production involves changes in transcription of the hemA gene, which codes for one of two isoenzymes catalyzing 5-aminolevulinic acid synthesis. Regulation of hemA transcription from its two promoters is mediated by the DNA binding proteins FnrL and PrrA. The two PrrA binding sites, binding sites I and II, which are located upstream of the more-5′ hemA promoter (P1), are equally important to transcription under aerobic conditions, while binding site II is more important under anaerobic conditions. By using phosphoprotein affinity chromatography and immunoblot analyses, we showed that the phosphorylated PrrA levels in the cell increase with decreasing oxygen tensions. Then, using both in vivo and in vitro methods, we demonstrated that the relative affinities of phosphorylated and unphosphorylated PrrA for the two binding sites differ and that phosphorylated PrrA has greater affinity for site II. We also showed that PrrA regulation is directed toward the P1 promoter. We propose that the PrrA component of anaerobic induction of P1 transcription is attributable to higher affinity of phosphorylated PrrA than of unphosphorylated PrrA for binding site II. Anaerobic activation of the more-3′ hemA promoter (P2) is thought to involve FnrL binding to an FNR consensuslike sequence located upstream of the P2 promoter, but the contribution of FnrL to P1 induction may be indirect since the P1 transcription start is within the putative FnrL binding site. We present evidence suggesting that the indirect action of FnrL works through PrrA and discuss possible mechanisms.


1999 ◽  
Vol 19 (3) ◽  
pp. 2044-2050 ◽  
Author(s):  
Seok Hee Park ◽  
Sang Seok Koh ◽  
Jae Hwan Chun ◽  
Hye Jin Hwang ◽  
Hyen Sam Kang

ABSTRACT Expression of genes encoding starch-degrading enzymes is regulated by glucose repression in the yeast Saccharomyces cerevisiae. We have identified a transcriptional repressor, Nrg1, in a genetic screen designed to reveal negative factors involved in the expression of STA1, which encodes a glucoamylase. TheNRG1 gene encodes a 25-kDa C2H2zinc finger protein which specifically binds to two regions in the upstream activation sequence of the STA1 gene, as judged by gel retardation and DNase I footprinting analyses. Disruption of theNRG1 gene causes a fivefold increase in the level of theSTA1 transcript in the presence of glucose. The expression of NRG1 itself is inhibited in the absence of glucose. DNA-bound LexA-Nrg1 represses transcription of a target gene 10.7-fold in a glucose-dependent manner, and this repression is abolished in bothssn6 and tup1 mutants. Two-hybrid and glutathione S-transferase pull-down experiments show an interaction of Nrg1 with Ssn6 both in vivo and in vitro. These findings indicate that Nrg1 acts as a DNA-binding repressor and mediates glucose repression of the STA1 gene expression by recruiting the Ssn6-Tup1 complex.


2006 ◽  
Vol 37 (1) ◽  
pp. 185-197 ◽  
Author(s):  
Thomas Ohnesorg ◽  
Brigitte Keller ◽  
Martin Hrabé de Angelis ◽  
Jerzy Adamski

In both humans and mice, 17β-hydroxysteroid dehydrogenase type-7 (HSD17B7) was described as possessing dual enzymatic functionality. The enzyme was first shown to be able to convert estrone to estradiol in vitro. Later involvement of this enzyme in postsqualene cholesterol biosynthesis was postulated (conversion of zymosterone to zymosterol) and could be proven in vitro. In this work, we performed a detailed analysis of the transcriptional regulation of both the human and murine genes. Despite relatively low sequence similarity, both promoters contain similar contexts of transcription factor-binding sites. The participation of these sites in transcriptional regulation of HSD17B7 was proven by electro-mobility shift assay and site-directed mutagenesis of the corresponding binding sites. We describe novel involvement of vitamin D receptor/retinoid X receptor and provide new information on the regulation of HSD17B7 expression by sterol regulatory element-binding protein and hepatocyte nuclear factor 4, the latter known from other genes of cholesterogenic enzymes. The results of our study provide unequivocal evidence for a role of HSD17B7 in cholesterol biosynthesis.


2018 ◽  
Vol 115 (16) ◽  
pp. E3692-E3701 ◽  
Author(s):  
Chaitanya Rastogi ◽  
H. Tomas Rube ◽  
Judith F. Kribelbauer ◽  
Justin Crocker ◽  
Ryan E. Loker ◽  
...  

Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes.


Sign in / Sign up

Export Citation Format

Share Document