scholarly journals Interdomain B in ZAP-70 Regulates but Is Not Required for ZAP-70 Signaling Function in Lymphocytes

1999 ◽  
Vol 19 (1) ◽  
pp. 948-956 ◽  
Author(s):  
Qihong Zhao ◽  
Brandi L. Williams ◽  
Robert T. Abraham ◽  
Arthur Weiss

ABSTRACT The protein tyrosine kinase ZAP-70 plays an important role in T-cell activation and development. After T-cell receptor stimulation, ZAP-70 associates with the receptor and is phosphorylated on many tyrosines, including Y292, Y315, and Y319 within interdomain B. Previously, we demonstrated that Y292 negatively regulates ZAP-70 function and that Y315 positively regulates ZAP-70 function by interacting with Vav. Recent studies have suggested that Y319 also positively regulate ZAP-70 function. Paradoxically, removal of interdomain B (to create the construct designated Δ), containing the Y292, Y315, and Y319 sites, did not eliminate the ability of ZAP-70 to induce multiple gene reporters in Syk-deficient DT-40 B cells and ZAP-70/Syk-deficient Jurkat cells. Here we show that Δ still utilizes the same pathways as wild-type ZAP-70 to mediate NF-AT induction. This is manifested by the ability of Δ to restore induction of calcium fluxes and mitogen-activated protein kinase activation and by the ability of dominant negative Ras and FK506 to block the induction of NF-AT activity mediated by Δ. Biochemically we show that the stimulated tyrosine phosphorylation of Vav, Shc, and ZAP-70 itself is diminished, whereas that of Slp-76 is increased in cells reconstituted with Δ. Deletion of interdomain B did not affect the ability of ZAP-70 to bind to the receptor. The in vitro kinase activity of ZAP-70 lacking interdomain B was markedly reduced, but the kinase activity was still required for the protein’s in vivo activity. Based on these data, we concluded that interdomain B regulates but is not required for ZAP-70 signaling function leading to cellular responses.

2015 ◽  
Vol 2015 ◽  
pp. 1-12
Author(s):  
Jean-Paul Vernot ◽  
Ana María Perdomo-Arciniegas ◽  
Luis Alberto Pérez-Quintero ◽  
Diego Fernando Martínez

The Lck interacting protein Tip ofHerpesvirus saimiriis responsible for T-cell transformation bothin vitroandin vivo. Here we designed the chimeric peptide hTip-CSKH, comprising the Lck specific interacting motif CSKH of Tip and its hydrophobic transmembrane sequence (hTip), the latter as a vector targeting lipid rafts. We found that hTip-CSKH can induce a fivefold increase in proliferation of human andAotussp. T-cells. Costimulation with PMA did not enhance this proliferation rate, suggesting that hTip-CSKH is sufficient and independent of further PKC stimulation. We also found that human Lck phosphorylation was increased earlier after stimulation when T-cells were incubated previously with hTip-CSKH, supporting a strong signalling and proliferative effect of the chimeric peptide. Additionally, Lck downstream signalling was evident with hTip-CSKH but not with control peptides. Importantly, hTip-CSKH could be identified in heavy lipid rafts membrane fractions, a compartment where important T-cell signalling molecules (LAT, Ras, and Lck) are present during T-cell activation. Interestingly, hTip-CSKH was inhibitory to Jurkat cells, in total agreement with the different signalling pathways and activation requirements of this leukemic cell line. These results provide the basis for the development of new compounds capable of modulating therapeutic targets present in lipid rafts.


2005 ◽  
Vol 25 (4) ◽  
pp. 1367-1378 ◽  
Author(s):  
Wen-Hsien Liu ◽  
Ming-Zong Lai

ABSTRACT Deltex is known as a Notch signal mediator, but its physiological action mechanism is poorly understood. Here we identified a new regulatory role of Deltex in T-cell activation. Deltex expression was constitutive in resting T cells and was reduced upon T-cell receptor (TCR)-stimulated activation. The biological role of Deltex is supported by the enhanced T-cell activation when Deltex1 was down-regulated by small interfering RNA. Overexpression of Deltex1 suppressed T-cell activation but not the proximal TCR activation events. The impaired activation of mitogen-activated protein kinase by Deltex could be partly attributed to a selective down-regulation of MEKK1 protein in T cells. We further found that Deltex promoted degradation of the C-terminal catalytic fragment of MEKK1 [MEKK1(C)]. Deltex1 interacted directly with MEKK1(C) and stimulated the ubiquitination of MEKK1(C) as shown by in vivo and in vitro ubiquitination analysis. Therefore, MEKK1(C), the dominant form of MEKK1 in T cells, is a target of Deltex E3 ubiquitin ligase. Our results reveal a novel mechanism as to how Deltex selectively suppresses T-cell activation through degradation of a key signaling molecule, MEKK1.


1995 ◽  
Vol 310 (1) ◽  
pp. 243-248 ◽  
Author(s):  
T Dubois ◽  
J P Oudinet ◽  
F Russo-Marie ◽  
B Rothhut

In order to understand how signal transduction occurs during T cell activation, it is necessary to identify the key regulatory molecules whose function is influenced by phosphorylation. Annexins II (A-II) and V (A-V) belong to a large family of Ca(2+)-dependent phospholipid-binding proteins. Among many putative functions, annexins may be involved in signal transduction during cellular proliferation and differentiation. In the present study we show that A-II is phosphorylated in vivo in the Jurkat human T cell line. Indeed, A-II is phosphorylated after stimulation by phorbol myristate acetate and on serine residues after T cell antigen receptor (TcR) stimulation. In cytosol from Jurkat cells, A-II is phosphorylated only by Ca2+/phospholipid-stimulated kinases such as Ca(2+)-dependent protein kinases C (cPKCs). A-V inhibits the phosphorylation of A-II and other substrates of cPKCs and has no effect on kinases activated only by phospholipids. In conclusion, A-II is phosphorylated both in vitro and in vivo in Jurkat cells, and may play a role as a substrate during signal transduction in lymphocytes via the TcR through the PKC pathway. On the other hand, A-V could act as a potent modulator of cPKCs in Jurkat cells.


2012 ◽  
Vol 209 (6) ◽  
pp. 1201-1217 ◽  
Author(s):  
Tadashi Yokosuka ◽  
Masako Takamatsu ◽  
Wakana Kobayashi-Imanishi ◽  
Akiko Hashimoto-Tane ◽  
Miyuki Azuma ◽  
...  

Programmed cell death 1 (PD-1) is a negative costimulatory receptor critical for the suppression of T cell activation in vitro and in vivo. Single cell imaging elucidated a molecular mechanism of PD-1–mediated suppression. PD-1 becomes clustered with T cell receptors (TCRs) upon binding to its ligand PD-L1 and is transiently associated with the phosphatase SHP2 (Src homology 2 domain–containing tyrosine phosphatase 2). These negative costimulatory microclusters induce the dephosphorylation of the proximal TCR signaling molecules. This results in the suppression of T cell activation and blockade of the TCR-induced stop signal. In addition to PD-1 clustering, PD-1–TCR colocalization within microclusters is required for efficient PD-1–mediated suppression. This inhibitory mechanism also functions in PD-1hi T cells generated in vivo and can be overridden by a neutralizing anti–PD-L1 antibody. Therefore, PD-1 microcluster formation is important for regulation of T cell activation.


2022 ◽  
Vol 12 ◽  
Author(s):  
Niels C. Lory ◽  
Mikolaj Nawrocki ◽  
Martina Corazza ◽  
Joanna Schmid ◽  
Valéa Schumacher ◽  
...  

Antigen recognition by the T-cell receptor induces a cytosolic Ca2+ signal that is crucial for T-cell function. The Ca2+ channel TRPM2 (transient receptor potential cation channel subfamily M member 2) has been shown to facilitate influx of extracellular Ca2+ through the plasma membrane of T cells. Therefore, it was suggested that TRPM2 is involved in T-cell activation and differentiation. However, these results are largely derived from in vitro studies using T-cell lines and non-physiologic means of TRPM2 activation. Thus, the relevance of TRPM2-mediated Ca2+ signaling in T cells remains unclear. Here, we use TRPM2-deficient mice to investigate the function of TRPM2 in T-cell activation and differentiation. In response to TCR stimulation in vitro, Trpm2-/- and WT CD4+ and CD8+ T cells similarly upregulated the early activation markers NUR77, IRF4, and CD69. We also observed regular proliferation of Trpm2-/- CD8+ T cells and unimpaired differentiation of CD4+ T cells into Th1, Th17, and Treg cells under specific polarizing conditions. In vivo, Trpm2-/- and WT CD8+ T cells showed equal specific responses to Listeria monocytogenes after infection of WT and Trpm2-/- mice and after transfer of WT and Trpm2-/- CD8+ T cells into infected recipients. CD4+ T-cell responses were investigated in the model of anti-CD3 mAb-induced intestinal inflammation, which allows analysis of Th1, Th17, Treg, and Tr1-cell differentiation. Here again, we detected similar responses of WT and Trpm2-/- CD4+ T cells. In conclusion, our results argue against a major function of TRPM2 in T-cell activation and differentiation.


1998 ◽  
Vol 187 (11) ◽  
pp. 1849-1862 ◽  
Author(s):  
Katina Saoulli ◽  
Soo Young Lee ◽  
Jennifer L. Cannons ◽  
Wen Chen Yeh ◽  
Angela Santana ◽  
...  

4-1BB ligand (4-1BBL) is a member of the tumor necrosis factor (TNF) family expressed on activated antigen-presenting cells. Its receptor, 4-1BB, is a member of the TNF receptor family expressed on activated CD4 and CD8 T cells. We have produced a soluble form of 4-1BBL using the baculovirus expression system. When coimmobilized on plastic with anti-CD3, soluble 4-1BBL induces interleukin (IL)-2 production by resting CD28+ or CD28− T cells, indicating that 4-1BBL can function independently of other cell surface molecules, including CD28, in costimulation of resting T cell activation. At low concentrations of anti-CD3, 4-1BBL is inferior to anti-CD28 in T cell activation. However, when 4-1BB ligand is provided together with strong TCR signals, then 4-1BBL and anti-CD28 are equally potent in stimulation of IL-2 production by resting T cells. We find that TNF receptor–associated factor (TRAF)1 or TRAF2 associate with a glutathione S-transferase–4-1BB cytoplasmic domain fusion protein in vitro. In T cells, we find that association of TRAF1 and TRAF2 with 4-1BB requires 4-1BB cross-linking. In support of a functional role for TRAF2 in 4-1BB signaling, we find that resting T cells isolated from TRAF2-deficient mice or from mice expressing a dominant negative form of TRAF2 fail to augment IL-2 production in response to soluble 4-1BBL. Thus 4-1BB, via the TRAF2 molecule, can provide CD28-independent costimulatory signals to resting T cells.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15056-e15056
Author(s):  
Diana I. Albu ◽  
Yan Qin ◽  
Xianzhe Wang ◽  
Vivian Li ◽  
Taeg Kim ◽  
...  

e15056 Background: Checkpoint blockade therapies targeting PD-1 and PD-L1 have shown great success for the treatment of various malignancies. However, a substantial fraction of patients with PD-L1-positive tumors remain unresponsive to these therapies. Novel therapy with significantly greater activity than the leading PD-1/PD-L1 inhibitors is expected to bring additional clinical benefit to patients. Here we describe the preclinical evaluation of CTX-8371, which combines anti-PD-1 and anti-PD-L1 monoclonal antibodies in one bispecific tetravalent molecule. Methods: The immune-enhancing activity of CTX-8371 was tested in vitro in T cell activation assays and tumor cell killing assay. CTX-8371 anti-tumor efficacy in vivo was assessed using mouse tumor cells expressing human PD-L1 implanted in transgenic mice humanized at the PD-1 and PD-L1 loci. CTX-8371 anti-tumor activity was also tested in xenograft tumor models. The mechanism of action of CTX-8371 was investigated in vitro using Jurkat cells expressing PD-1 or PD-L1, human PBMCs, and in vivo in tumor-bearing, chimeric PD-1/PD-L1 transgenic mice. CTX-8371 PK was determined in mice using an MSD ELISA-based assay and in cynomolgus monkeys using a qualified ELISA method. Dose range finding and toxicokinetic studies were performed in cynomolgus monkeys. Results: CTX-8371 potently enhanced T cell activation and function in vitro and showed curative efficacy as monotherapy in multiple solid tumor models, isografts or xenografts. Furthermore, CTX-8371 demonstrated superior anti-tumor efficacy compared to Keytruda or atezolizumab in checkpoint inhibitors-sensitive and resistant syngeneic mouse tumor models. Mechanistically, in addition to blocking PD-1 interaction with PD-L1, CTX-8371 bispecific antibody facilitated cell to cell bridging between cells expressing PD-1 and cells expressing PD-L1. Furthermore, we show that simultaneous binding of CTX-8371 to both PD-1 and PD-L1 resulted in long term PD-1 shedding. This suggests that CTX-8371 may prevent or overcome T cell exhaustion within the tumor microenvironment, thus providing additional advantage over existing therapies. Lastly, excellent tolerability was observed in non-human primates given 2 weekly drug infusions at up to 50 mg/kg dose. Conclusions: CTX-8371 displays multiple mechanisms of action over monoclonal PD1/PD-L1 blockade. These unique pharmacological properties of CTX-8371 could explain the enhanced T cell responses to tumor antigens and superior efficacy over current monoclonal antibody therapies. With favorable PK/PD and toxicology profiles in mice and cynomolgus monkeys, CTX-8371 warrants further advancement to clinical testing.


2000 ◽  
Vol 278 (6) ◽  
pp. L1221-L1230 ◽  
Author(s):  
Holger Garn ◽  
Anke Friedetzky ◽  
Andrea Kirchner ◽  
Ruth Jäger ◽  
Diethard Gemsa

In chronic silicosis, mechanisms leading to lymphocyte activation are still poorly understood, although it is well known that not only the lung but also the draining lymph nodes are affected. In the present study, we investigated T-cell activation by analysis of cytokine expression in the enlarged thoracic lymph nodes of rats 2 mo after an 8-day silica aerosol exposure. In the case of helper T cell (Th) type 1 cytokines, we found a significant increase in interferon (IFN)-γ mRNA expression, whereas interleukin (IL)-2 expression remained unchanged. In contrast, gene transcription for the Th2-type cytokines IL-4 and IL-10 was diminished. In addition, with use of an in vitro lymphocyte-macrophage coculture system, an enhanced IFN-γ and a reduced IL-10 release were shown with cells from silicotic animals. With regard to IFN-γ-inducing cytokines, we observed enhanced IL-12 mRNA levels in vivo, whereas IL-18 gene expression was slightly decreased. These data indicate that a persistent shift toward an IFN-γ-dominated type 1 (Th1/cytotoxic T cell type 1) T-cell reaction pattern occurred within the thoracic lymph nodes of silicotic animals. Thus a mutual activation of lymphocytes and macrophages may maintain the chronic inflammatory changes that characterize silicosis.


1997 ◽  
Vol 3 (4) ◽  
pp. 238-242 ◽  
Author(s):  
JW Lindsey ◽  
RH Kerman ◽  
JS Wolinsky

Activated T cells are able to stimulate proliferation in resting T cells through an antigen non-specific mechanism. The in vivo usefulness of this T cell-T cell activation is unclear, but it may serve to amplify immune responses. T cell-T cell activation could be involved in the well-documented occurrence of multiple sclerosis (MS) exacerbations following viral infections. Excessive activation via this pathway could also be a factor in the etiology of MS. We tested the hypothesis that excessive T cell-T cell activation occurs in MS patients using in vitro proliferation assays comparing T cells from MS patients to T cells from controls. When tested as responder cells, T cells from MS patients proliferated slightly less after stimulation with previously activated cells than T cells from controls. When tested as stimulator cells, activated cells from MS patients stimulated slightly more non-specific proliferation than activated cells from controls. Neither of these differences were statistically significant We conclude that T cell proliferation in response to activated T cells is similar in MS and controls.


Sign in / Sign up

Export Citation Format

Share Document