scholarly journals Concerted Activity of Tyrosine Phosphatase SHP-2 and Focal Adhesion Kinase in Regulation of Cell Motility

1999 ◽  
Vol 19 (4) ◽  
pp. 3125-3135 ◽  
Author(s):  
Santos Mañes ◽  
Emilia Mira ◽  
Concepción Gómez-Mouton ◽  
Zhizuang Joe Zhao ◽  
Rosa Ana Lacalle ◽  
...  

ABSTRACT The coordinated interplay of substrate adhesion and deadhesion is necessary for cell motility. Using MCF-7 cells, we found that insulin-like growth factor I (IGF-I) induces the adhesion of MCF-7 to vitronectin and collagen in a dose- and time-dependent manner, suggesting that IGF-I triggers the activation of different integrins. On the other hand, IGF-I promotes the association of insulin receptor substrate 1 with the focal adhesion kinase (FAK), paxillin, and the tyrosine phosphatase SHP-2, resulting in FAK and paxillin dephosphorylation. Abrogation of SHP-2 catalytic activity with a dominant-negative mutant (SHP2-C>S) abolishes IGF-I-induced FAK dephosphorylation, and cells expressing SHP2-C>S show reduced IGF-I-stimulated chemotaxis compared with either mock- or SHP-2 wild-type-transfected cells. This impairment of cell migration is recovered by reintroduction of a catalytically active SHP-2. Interestingly, SHP-2-C>S cells show a larger number of focal adhesion contacts than wild-type cells, suggesting that SHP-2 activity participates in the integrin deactivation process. Although SHP-2 regulates mitogen-activated protein kinase activity, the mitogen-activated protein kinase kinase inhibitor PD-98059 has only a marginal effect on MCF-7 cell migration. The role of SHP-2 as a general regulator of cell chemotaxis induced by other chemotactic agents and integrins is discussed.

2004 ◽  
Vol 72 (10) ◽  
pp. 5662-5667 ◽  
Author(s):  
Nicola J. Mason ◽  
Jim Fiore ◽  
Takashi Kobayashi ◽  
Katherine S. Masek ◽  
Yongwon Choi ◽  
...  

ABSTRACT The production of interleukin-12 (IL-12) is critical to the development of innate and adaptive immune responses required for the control of intracellular pathogens. Many microbial products signal through Toll-like receptors (TLR) and activate NF-κB family members that are required for the production of IL-12. Recent studies suggest that components of the TLR pathway are required for the production of IL-12 in response to the parasite Toxoplasma gondii; however, the production of IL-12 in response to this parasite is independent of NF-κB activation. The adaptor molecule TRAF6 is involved in TLR signaling pathways and associates with serine/threonine kinases involved in the activation of both NF-κB and mitogen-activated protein kinase (MAPK). To elucidate the intracellular signaling pathways involved in the production of IL-12 in response to soluble toxoplasma antigen (STAg), wild-type and TRAF6−/− mice were inoculated with STAg, and the production of IL-12(p40) was determined. TRAF6−/− mice failed to produce IL-12(p40) in response to STAg, and TRAF6−/− macrophages stimulated with STAg also failed to produce IL-12(p40). Studies using Western blot analysis of wild-type and TRAF6−/− macrophages revealed that stimulation with STAg resulted in the rapid TRAF6-dependent phosphorylation of p38 and extracellular signal-related kinase, which differentially regulated the production of IL-12(p40). The studies presented here demonstrate for the first time that the production of IL-12(p40) in response to toxoplasma is dependent upon TRAF6 and p38 MAPK.


2009 ◽  
Vol 20 (3) ◽  
pp. 1020-1029 ◽  
Author(s):  
Wei Zuo ◽  
Ye-Guang Chen

Transforming growth factor (TGF)-β regulates a spectrum of cellular events, including cell proliferation, differentiation, and migration. In addition to the canonical Smad pathway, TGF-β can also activate mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and small GTPases in a cell-specific manner. Here, we report that cholesterol depletion interfered with TGF-β–induced epithelial-mesenchymal transition (EMT) and cell migration. This interference is due to impaired activation of MAPK mediated by cholesterol-rich lipid rafts. Cholesterol-depleting agents specifically inhibited TGF-β–induced activation of extracellular signal-regulated kinase (ERK) and p38, but not Smad2/3 or Akt. Activation of ERK or p38 is required for both TGF-β–induced EMT and cell migration, whereas PI3K/Akt is necessary only for TGF-β–promoted cell migration but not for EMT. Although receptor heterocomplexes could be formed in both lipid raft and nonraft membrane compartments in response to TGF-β, receptor localization in lipid rafts, but not in clathrin-coated pits, is important for TGF-β–induced MAPK activation. Requirement of lipid rafts for MAPK activation was further confirmed by specific targeting of the intracellular domain of TGF-β type I receptor to different membrane locations. Together, our findings establish a novel link between cholesterol and EMT and cell migration, that is, cholesterol-rich lipid rafts are required for TGF-β–mediated MAPK activation, an event necessary for TGF-β–directed epithelial plasticity.


1996 ◽  
Vol 271 (8) ◽  
pp. 4319-4326 ◽  
Author(s):  
Marco Muda ◽  
Ursula Boschert ◽  
Robin Dickinson ◽  
Jean-Claude Martinou ◽  
Isabelle Martinou ◽  
...  

2000 ◽  
Vol 352 (2) ◽  
pp. 399-407 ◽  
Author(s):  
Jeannie M. GRIPENTROG ◽  
Algirdas J. JESAITIS ◽  
Heini M. MIETTINEN

The formyl peptide receptor (FPR) is a G-protein-coupled receptor (GPCR) that mediates chemotaxis and stimulates the mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase pathway. We have examined the functional effects of substitutions of a conserved aspartic acid residue in the second transmembrane domain (D71A) and of residues in the conserved NPXXY motif in the seventh transmembrane domain (N297A and Y301A). These mutated receptors, expressed in Chinese hamster ovary (CHO) cells, bind ligand with affinities similar to wild-type FPR, but the D71A mutant is uncoupled from G-protein [Miettinen, Mills, Gripentrog, Dratz, Granger and Jesaitis (1997) J. Immunol 159, 4045–4054]. In the present study, we show that both the D71A and N297A mutations resulted in defective endocytosis. The N297A substitution also prevented desensitization, as determined by intracellular calcium mobilization by sequential stimulation with ligand. In chemotaxis assays, the N297A mutation resulted in cell migration towards gradients of up to 100nM N-formyl-methionyl-leucyl-phenylalanine (fMLF), whereas cells expressing the wild-type FPR and the Y301A mutant were no longer chemotactically responsive at 10–100nM fMLF. Maximal activation of p42/44 MAPK occurred in CHO cells expressing wild-type FPR at 10nM–100nM fMLF, whereas cells expressing the N297A mutant showed a dose-dependent increase in the amount of phosphorylated p42/44 MAPK up to 1–10µM fMLF. Since the MAPK kinase inhibitor PD98059 blocked fMLF-induced chemotaxis, our results suggest that the dose-dependent increase in p42/44 MAPK activation may correlate with the increased chemotactic migration of N297A transfectants at 10nM–100nM fMLF.


2010 ◽  
Vol 208 (1) ◽  
pp. 11-19 ◽  
Author(s):  
R. A. Mendoza ◽  
E. E. Moody ◽  
M. I. Enriquez ◽  
S. M. Mejia ◽  
G. Thordarson

Sign in / Sign up

Export Citation Format

Share Document