scholarly journals SEL-10 Is an Inhibitor of Notch Signaling That Targets Notch for Ubiquitin-Mediated Protein Degradation

2001 ◽  
Vol 21 (21) ◽  
pp. 7403-7415 ◽  
Author(s):  
Guangyu Wu ◽  
Svetlana Lyapina ◽  
Indranil Das ◽  
Jinhe Li ◽  
Mark Gurney ◽  
...  

ABSTRACT Notch receptors and their ligands play important roles in both normal animal development and pathogenesis. We show here that the F-box/WD40 repeat protein SEL-10 negatively regulates Notch receptor activity by targeting the intracellular domain of Notch receptors for ubiquitin-mediated protein degradation. Blocking of endogenous SEL-10 activity was done by expression of a dominant-negative form containing only the WD40 repeats. In the case of Notch1, this block leads to an increase in Notch signaling stimulated by either an activated form of the Notch1 receptor or Jagged1-induced signaling through Notch1. Expression of dominant-negative SEL-10 leads to stabilization of the intracellular domain of Notch1. The Notch4 intracellular domain bound to SEL-10, but its activity was not increased as a result of dominant-negative SEL-10 expression. SEL-10 bound Notch4 via the WD40 repeats and bound preferentially to a phosphorylated form of Notch4 in cells. We mapped the region of Notch4 essential for SEL-10 binding to the C-terminal region downstream of the ankyrin repeats. When this C-terminal fragment of Notch4 was expressed in cells, it was highly labile but could be stabilized by the expression of dominant-negative SEL-10. Ubiquitination of Notch1 and Notch4 intracellular domains in vitro was dependent on SEL-10. Although SEL-10 interacts with the intracellular domains of both Notch1 and Notch4, these proteins respond differently to interference with SEL-10 function. Thus, SEL-10 functions to promote the ubiquitination of Notch proteins; however, the fates of these proteins may differ.

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 226.3-226
Author(s):  
M. Filipović ◽  
A. Šućur ◽  
D. Flegar ◽  
Z. Jajić ◽  
M. Ikić Matijašević ◽  
...  

Background:Osteoclasts mediate periarticular and systemic bone loss in rheumatoid arthritis (RA). Osteoclast progenitor cells (OCPs) derived from the myeloid lineage are susceptible to regulation through Notch signaling. Murine bone marrow and splenic OCPs, identified as CD45+Ly6G-CD3-B220-NK1.1-CD11blo/+CD115+CCR2+ cells, are specifically increased in arthritis. We previously identified an increased frequency of OCPs expressing Notch receptors in arthritic mice.Objectives:Several studies suggested that Notch signaling modulation affects the course of experimental arthritis. We aimed to determine the effects of Notch receptor signaling inhibition on OCP activity and arthritis severity in murine collagen-induced arthritis (CIA).Methods:Male C57/Bl6 and DBA mice were immunized with chicken type II collagen and treated with i.p. injections of anti-Notch 1 neutralizing antibodies (1mg/kg). Notch receptor 1 through 4 expression on OCPs was analyzed by flow cytometry in periarticular bone marrow (PBM) and spleen (SPL). Gene expression of Notch receptors, ligands and transcription targets as well as osteoclast differentiation genes RANK, cFos and cFms was determined by qPCR from tissues and sorted OCPs. FACS sorted OCPs were stimulated by osteoclastogenic factors (M-CSF and RANKL), in control, IgG, Jagged (Jag)1 or Delta-like (DLL)1 coated wells, with or without anti-Notch 1 antibodies. Research was approved by the Ethics Committee.Results:We confirmed the expression of Notch receptors on OCPs by flow cytometry with Notch 1 and 2 being most abundantly expressed (around 25% and 40% positive OCPs in PBM and 35% and 20% in SPL respectively), with a significant increase of Notch 2 expression in arthritis. Seeding OCPs on DLL1 coated wells significantly increased while seeding on Jag1 coated wells significantly decreased osteoclastogenesis as reflected on the number of TRAP+ osteoclasts and expression of osteoclast differentiation genes. The addition of anti-Notch 1 antibodies to ligand-stimulated OCPs resulted in an increased number of TRAP+ osteoclasts, partially reversing Jag1 inhibition. In vivo treatment with anti-Notch 1 antibodies did not affect total OCP frequency, but increased expression of Notch 4 both in PBM and SPL as seen by flow cytometry and qPCR. Additionally, anti-Notch 1 treatment stimulated Notch transcription factors HES and HEY. Both PBM and SPL cultured OCPs from anti-Notch 1 treated mice produced a higher number of large TRAP+ osteoclasts, doubling the area covered with osteoclasts in the latter compared to untreated mice. Increased osteoclastogenesis in vitro was further confirmed by an increased expression of osteoclast differentiation genes in the treated group.Conclusion:Our results confirm that Notch signaling may represent an important therapeutic target for the regulation of osteoclast activity in arthritis. Both in vitro and in vivo anti-Notch 1 neutralizing antibodies enhanced osteoclastogenesis in CIA model, implying an inhibitory role of Notch 1 signaling in osteoclast differentiation. As Notch 2 expression is increased on OCPs of arthritic mice, we next plan to determine the effects of Notch 2 neutralization on osteoclast activity and arthritis severity.References:[1]Ikić Matijašević M, Flegar D, Kovačić N, Katavić V, Kelava T, Šućur A, et al. Increased chemotaxis and activity of circulatory myeloid progenitor cells may contribute to enhanced osteoclastogenesis and bone loss in the C57BL/6 mouse model of collagen-induced arthritis. Clin Exp Immunol. 2016;186(3):321–35.[2]Šućur A, Filipović M, Flegar D, Kelava T, Šisl D, Lukač N, et al. Notch receptors and ligands in inflammatory arthritis – a systematic review. Immunology Letters 2020 Vol. 223, p. 106–14.Acknowledgements:The work has been supported by Croatian Science Foundation projects IP-2018-01-2414, UIP-2017-05-1965 and DOK-2018-09-4276.Disclosure of Interests:None declared.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 257-257
Author(s):  
Michael E Engel ◽  
Hong Nguyen ◽  
Jolene Mariotti ◽  
Aubrey A Hunt ◽  
Scott Hiebert

Abstract Abstract 257 The Notch signaling pathway regulates gene expression programs to control the specification of cell fate in diverse tissues. In response to ligand binding, the intracellular domain of Notch receptors is cleaved by the γ-secretase complex and then translocates to the nucleus. There it binds the transcriptional repressor CSL, triggering its conversion to an activator of Notch target gene expression. The events that control this conversion are poorly understood. We show that the transcriptional co-repressor, MTG16, interacts with both CSL and the intracellular domains of Notch receptors. The MTG16 NHR3 domain contributes to CSL binding, while N-ICD binding sites lie within the PST1 and PST2 domains. The Notch intracellular domain disrupts the MTG16—CSL interaction, suggesting a pivotal role in regulating the Notch transcription complex. Using co-culture of Lin-/Sca-1+/c-Kit+ (LSK) cells on OP9-DL1 stromal cells, we show that ex vivo fate specification in response to Notch signal activation is altered in Mtg16 (−/−) hematopoietic progenitors. While Notch signal activation specifies lymphoid fate in Mtg16 (+/+) LSK cells, Mtg16 (−/−) LSK cells display cell surface marker expression reminiscent of myeloid differentiation. We used this lineage allocation assay to assess the contribution of MTG16 to cell fate determination. Lymphoid fate specification is restored by MTG16WT expression in Mtg16 (−/−) LSK cells. However, an MTG16 mutant deficient in N1-ICD binding is defective in this assay, suggesting this region is important to Notch-dependent lineage allocation. These data suggest that MTG family proteins interface with critical components of the Notch transcription complex and intimate a functional relationship between MTG proteins and Notch signaling in normal and malignant hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Development ◽  
2002 ◽  
Vol 129 (4) ◽  
pp. 1049-1059 ◽  
Author(s):  
Kenji Matsuno ◽  
Mikiko Ito ◽  
Kazuya Hori ◽  
Fumiyasu Miyashita ◽  
Satoshi Suzuki ◽  
...  

The Notch pathway is an evolutionarily conserved signaling mechanism that is essential for cell-cell interactions. The Drosophila deltex gene regulates Notch signaling in a positive manner, and its gene product physically interacts with the intracellular domain of Notch through its N-terminal domain. Deltex has two other domains that are presumably involved in protein-protein interactions: a proline-rich motif that binds to SH3-domains, and a RING-H2 finger motif. Using an overexpression assay, we have analyzed the functional involvement of these Deltex domains in Notch signaling. The N-terminal domain of Deltex that binds to the CDC10/Ankyrin repeats of the Notch intracellular domain was indispensable for the function of Deltex. A mutant form of Deltex that lacked the proline-rich motif behaved as a dominant-negative form. This dominant-negative Deltex inhibited Notch signaling upstream of an activated, nuclear form of Notch and downstream of full-length Notch, suggesting the dominant-negative Deltex might prevent the activation of the Notch receptor. We found that Deltex formed a homo-multimer, and mutations in the RING-H2 finger domain abolished this oligomerization. The same mutations in the RING-H2 finger motif of Deltex disrupted the function of Deltex in vivo. However, when the same mutant was fused to a heterologous dimerization domain (Glutathione-S-Transferase), the chimeric protein had normal Deltex activity. Therefore, oligomerization mediated by the RING-H2 finger motif is an integral step in the signaling function of Deltex.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 309
Author(s):  
Wataru Saiki ◽  
Chenyu Ma ◽  
Tetsuya Okajima ◽  
Hideyuki Takeuchi

The 100th anniversary of Notch discovery in Drosophila has recently passed. The Notch is evolutionarily conserved from Drosophila to humans. The discovery of human-specific Notch genes has led to a better understanding of Notch signaling in development and diseases and will continue to stimulate further research in the future. Notch receptors are responsible for cell-to-cell signaling. They are activated by cell-surface ligands located on adjacent cells. Notch activation plays an important role in determining the fate of cells, and dysregulation of Notch signaling results in numerous human diseases. Notch receptors are primarily activated by ligand binding. Many studies in various fields including genetics, developmental biology, biochemistry, and structural biology conducted over the past two decades have revealed that the activation of the Notch receptor is regulated by unique glycan modifications. Such modifications include O-fucose, O-glucose, and O-N-acetylglucosamine (GlcNAc) on epidermal growth factor-like (EGF) repeats located consecutively in the extracellular domain of Notch receptors. Being fine-tuned by glycans is an important property of Notch receptors. In this review article, we summarize the latest findings on the regulation of Notch activation by glycosylation and discuss future challenges.


1999 ◽  
Vol 19 (9) ◽  
pp. 6076-6084 ◽  
Author(s):  
Graeme C. M. Smith ◽  
Fabrizio d’adda di Fagagna ◽  
Nicholas D. Lakin ◽  
Stephen P. Jackson

ABSTRACT The activation of the cysteine proteases with aspartate specificity, termed caspases, is of fundamental importance for the execution of programmed cell death. These proteases are highly specific in their action and activate or inhibit a variety of key protein molecules in the cell. Here, we study the effect of apoptosis on the integrity of two proteins that have critical roles in DNA damage signalling, cell cycle checkpoint controls, and genome maintenance—the product of the gene defective in ataxia telangiectasia, ATM, and the related protein ATR. We find that ATM but not ATR is specifically cleaved in cells induced to undergo apoptosis by a variety of stimuli. We establish that ATM cleavage in vivo is dependent on caspases, reveal that ATM is an efficient substrate for caspase 3 but not caspase 6 in vitro, and show that the in vitro caspase 3 cleavage pattern mirrors that in cells undergoing apoptosis. Strikingly, apoptotic cleavage of ATM in vivo abrogates its protein kinase activity against p53 but has no apparent effect on the DNA binding properties of ATM. These data suggest that the cleavage of ATM during apoptosis generates a kinase-inactive protein that acts, through its DNA binding ability, in a trans-dominant-negative fashion to prevent DNA repair and DNA damage signalling.


Development ◽  
1999 ◽  
Vol 126 (17) ◽  
pp. 3925-3935 ◽  
Author(s):  
P. Beatus ◽  
J. Lundkvist ◽  
C. Oberg ◽  
U. Lendahl

The Notch signaling pathway is important for cellular differentiation. The current view is that the Notch receptor is cleaved intracellularly upon ligand activation. The intracellular Notch domain then translocates to the nucleus, binds to Suppressor of Hairless (RBP-Jk in mammals), and acts as a transactivator of Enhancer of Split (HES in mammals) gene expression. In this report we show that the Notch 3 intracellular domain (IC), in contrast to all other analysed Notch ICs, is a poor activator, and in fact acts as a repressor by blocking the ability of the Notch 1 IC to activate expression through the HES-1 and HES-5 promoters. We present a model in which Notch 3 IC interferes with Notch 1 IC-mediated activation at two levels. First, Notch 3 IC competes with Notch 1 IC for access to RBP-Jk and does not activate transcription when positioned close to a promoter. Second, Notch 3 IC appears to compete with Notch 1 IC for a common coactivator present in limiting amounts. In conclusion, this is the first example of a Notch IC that functions as a repressor in Enhancer of Split/HES upregulation, and shows that mammalian Notch receptors have acquired distinct functions during evolution.


2021 ◽  
Vol 22 (21) ◽  
pp. 12012
Author(s):  
Manuela Minguzzi ◽  
Veronica Panichi ◽  
Stefania D’Adamo ◽  
Silvia Cetrullo ◽  
Luca Cattini ◽  
...  

Notch signaling has been identified as a critical regulator of cartilage development and homeostasis. Its pivotal role was established by both several joint specific Notch signaling loss of function mouse models and transient or sustained overexpression. NOTCH1 is the most abundantly expressed NOTCH receptors in normal cartilage and its expression increases in osteoarthritis (OA), when chondrocytes exit from their healthy “maturation arrested state” and resume their natural route of proliferation, hypertrophy, and terminal differentiation. The latter are hallmarks of OA that are easily evaluated in vitro in 2-D or 3-D culture models. The aim of our study was to investigate the effect of NOTCH1 knockdown on proliferation (cell count and Picogreen mediated DNA quantification), cell cycle (flow cytometry), hypertrophy (gene and protein expression of key markers such as RUNX2 and MMP-13), and terminal differentiation (viability measured in 3-D cultures by luminescence assay) of human OA chondrocytes. NOTCH1 silencing of OA chondrocytes yielded a healthier phenotype in both 2-D (reduced proliferation) and 3-D with evidence of decreased hypertrophy (reduced expression of RUNX2 and MMP-13) and terminal differentiation (increased viability). This demonstrates that NOTCH1 is a convenient therapeutic target to attenuate OA progression.


2019 ◽  
Vol 12 (5) ◽  
pp. 345-358 ◽  
Author(s):  
Zhiyuan Luo ◽  
Lili Mu ◽  
Yue Zheng ◽  
Wenchen Shen ◽  
Jiali Li ◽  
...  

Abstract The release and nuclear translocation of the intracellular domain of Notch receptor (NICD) is the prerequisite for Notch signaling-mediated transcriptional activation. NICD is subjected to various posttranslational modifications including ubiquitination. Here, we surprisingly found that NUMB proteins stabilize the intracellular domain of NOTCH1 receptor (N1ICD) by regulating the ubiquitin–proteasome machinery, which is independent of NUMB’s role in modulating endocytosis. BAP1, a deubiquitinating enzyme (DUB), was further identified as a positive N1ICD regulator, and NUMB facilitates the association between N1ICD and BAP1 to stabilize N1ICD. Intriguingly, BAP1 stabilizes N1ICD independent of its DUB activity but relying on the BRCA1-inhibiting function. BAP1 strengthens Notch signaling and maintains stem-like properties of cortical neural progenitor cells. Thus, NUMB enhances Notch signaling by regulating the ubiquitinating activity of the BAP1–BRCA1 complex.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2448-2448
Author(s):  
Lan Zhou ◽  
Quanjian Yan ◽  
David Yao ◽  
Lebing W Li ◽  
Stanton L. Gerson ◽  
...  

Abstract Notch receptors are conserved cell surface molecules essential for hematopoietic cell fate determination. Activated Notch enhances self-renewal of hematopoietic stem cells and promotes T lymphopoiesis. O-linked fucose moieties attached to the EGF domains of Notch receptors and its modification by Fringe can strongly modulate Notch signaling. Our recently published results indicate that Notch-dependent signaling controls myelopoiesis both in vitro and in vivo, and identify a requirement for Notch fucosylation in the expression of Notch ligand binding activity and Notch signaling efficiency in hematopoietic progenitor cells. In the current study, we tested the hypothesis that fucosylation controlled Notch signaling regulates hematopoietic lineage homeostasis. Genetically-modified mouse embryonic stem (ES) cells deficient in Notch1 receptor (NOTCH1−/−) or pofut1 (POFUT1−/−) that controls O-fucose modification of Notch receptor EGF repeats are studied in an in vitro co-culture assay with Notch ligand-expressing OP9 cells. Activation of Notch in wild type ES cells promotes T lymphopoiesis, while exposure of NOTCH1−/− or POFUT1−/− ES cells to Notch ligand failed to generate T lymphocytes but sustained granulocytic production. When probed with recombinant Notch ligand Dll1 or Dll4, hematopoietic cells derived from wild type ES line displayed robust Notch ligand binding, but cells from NOTCH1−/− or POFUT1−/− ES lines showed completely absent or reduced Notch ligand interaction, respectively. In comparison, ES cells deficient in pofut2 (POFUT2−/−) that controls O-fucose modification on thrombospondin repeats (TSR) displayed a wild type lineage development phenotype and normal Notch ligand binding ability. When examined for their in vivo hematopoietic reconstitution, blood cells derived from NOTCH1−/− or POFUT1−/− ES lines, but not POFUT2−/− ES line, showed enhanced granulocytic but suppressed T and B lymphoid lineage development. These results are consistent with our bone marrow transplantation findings that hematopoietic reconstitution by fucosylation-deficient marrow progenitor cells exhibited increased granulocytopoiesis while wild type or fucosylation-intact marrow cells have normal lineage distribution. Our observations indicate that Notch signaling maintains blood lineage homeostasis by promoting lymphoid lineage development and suppressing overt myeloid development. O-fucose modification of EGF repeats on Notch receptor is essential for this Notch-dependent control of blood lineage homeostasis as deficiency of fucose on Notch receptor results in enhanced myeloid development.


Endocrinology ◽  
2008 ◽  
Vol 150 (1) ◽  
pp. 463-472 ◽  
Author(s):  
Brigid Orr ◽  
O. Cathal Grace ◽  
Griet Vanpoucke ◽  
George R. Ashley ◽  
Axel A. Thomson

Notch1 signaling is involved in epithelial growth and differentiation of prostate epithelia, and we have examined the role that notch signaling plays in the stroma of the developing prostate. We initially observed expression of δ-like 1 (Dlk1) and Notch2 in gene profiling studies of prostatic mesenchyme, and anticipated that they might be expressed in a key subset of inductive mesenchyme. Using quantitative RT-PCR, Northern blotting, and whole mount in situ hybridization, we confirmed that both Dlk1 and Notch2 mRNAs showed a restricted expression pattern within subsets of the stroma during prostate development. Localization of Dlk1 and Notch2 proteins mirrored the transcript expression, and showed both distinct and overlapping expression patterns within the stroma. Dlk1 and Notch2 were coexpressed in condensed inductive mesenchyme of the ventral mesenchymal pad (VMP), and were partially colocalized in the smooth muscle (SM) layer of the urethral stroma. In addition, Dlk1 was not expressed in SM adjacent to the VMP in female urethra. The function of notch signaling was examined using organ cultures of prostate rudiments and a small molecule inhibitor of notch receptor activity. Inhibition of notch signaling led to a loss of stromal tissue in both prostate and female VMP cultures, suggesting that this pathway was required for stromal survival. Inhibition of notch signaling also led to changes in both epithelial and stromal differentiation, which was evident in altered distributions of SM α-actin and p63 in prostates grown in vitro. The effects of notch signaling upon the stroma were only evident in the presence of testosterone, in contrast to effects upon epithelial differentiation. Studies on the expression of delta-like 1 homolog (Dlk1) and Notch 2 in prostatic mesenchyme shows that inhibition of notch signaling leads to defects in mesenchymal differentiation.


Sign in / Sign up

Export Citation Format

Share Document