scholarly journals Oncogenic ras and p53 Cooperate To Induce Cellular Senescence

2002 ◽  
Vol 22 (10) ◽  
pp. 3497-3508 ◽  
Author(s):  
Gerardo Ferbeyre ◽  
Elisa de Stanchina ◽  
Athena W. Lin ◽  
Emmanuelle Querido ◽  
Mila E. McCurrach ◽  
...  

ABSTRACT Oncogenic activation of the mitogen-activated protein (MAP) kinase cascade in murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the ARF/p53 tumor suppressor pathway. To investigate whether p53 is sufficient to induce senescence, we introduced a conditional murine p53 allele (p53val135 ) into p53-null mouse embryonic fibroblasts and examined cell proliferation and senescence in cells expressing p53, oncogenic Ras, or both gene products. Conditional p53 activation efficiently induced a reversible cell cycle arrest but was unable to induce features of senescence. In contrast, coexpression of oncogenic ras or activated mek1 with p53 enhanced both p53 levels and activity relative to that observed for p53 alone and produced an irreversible cell cycle arrest that displayed features of cellular senescence. p19ARF was required for this effect, since p53 −/− ARF −/− double-null cells were unable to undergo senescence following coexpression of oncogenic Ras and p53. Although the levels of exogenous p53 achieved in ARF-null cells were relatively low, the stabilizing effects of p19ARF on p53 could not explain the cooperation between oncogenic Ras and p53 in promoting senescence. Hence, enforced p53 expression without oncogenic ras in p53 −/− mdm2 −/− double-null cells produced extremely high p53 levels but did not induce senescence. Taken together, our results indicate that oncogenic activation of the MAP kinase pathway in murine fibroblasts converts p53 into a senescence inducer through both quantitative and qualitative mechanisms.

2006 ◽  
Vol 6 (2) ◽  
pp. 317-327 ◽  
Author(s):  
Melanie Heinrich ◽  
Tim Köhler ◽  
Hans-Ulrich Mösch

ABSTRACT In Saccharomyces cerevisiae, the highly conserved Rho-type GTPase Cdc42 is essential for cell division and controls cellular development during mating and invasive growth. The role of Cdc42 in mating has been controversial, but a number of previous studies suggest that the GTPase controls the mitogen-activated protein (MAP) kinase cascade by activating the p21-activated protein kinase (PAK) Ste20. To further explore the role of Cdc42 in pheromone-stimulated signaling, we isolated novel alleles of CDC42 that confer resistance to pheromone. We find that in CDC42(V36A) and CDC42(V36A, I182T) mutant strains, the inability to undergo pheromone-induced cell cycle arrest correlates with reduced phosphorylation of the mating MAP kinases Fus3 and Kss1 and with a decrease in mating efficiency. Furthermore, Cdc42(V36A) and Cdc42(V36A, I182T) proteins show reduced interaction with the PAK Cla4 but not with Ste20. We also show that deletion of CLA4 in a CDC42(V36A, I182T) mutant strain suppresses pheromone resistance and that overexpression of CLA4 interferes with pheromone-induced cell cycle arrest and MAP kinase phosphorylation in CDC42 wild-type strains. Our data indicate that Cla4 has the potential to act as a negative regulator of the mating pathway and that this function of the PAK might be under control of Cdc42. In conclusion, our study suggests that control of pheromone signaling by Cdc42 not only depends on Ste20 but also involves interaction of the GTPase with Cla4.


2018 ◽  
Vol 18 (6) ◽  
pp. 875-881 ◽  
Author(s):  
Xue Zhu ◽  
Ke Wang ◽  
Kai Zhang ◽  
Yi Pan ◽  
Fanfan Zhou ◽  
...  

Background: Retinoblastoma is the most common intraocular malignant tumor in childhood. Although external beam radiation and enucleation are effective to control retinoblastoma, eye salvage and vision preservation are still significant challenges. Polyphyllin I (PPI), a natural compound extracted from Paris polyphylla rhizomes, has a wide range of activities against many types of cancers. However, the potential effect of this herbal compound on retinoblastoma has not yet been investigated. Method: In the present study, we evaluated the cytotoxic effect of PPI on human retinoblastoma Y-79 cells as well as its underlying molecular mechanism. Our results indicated that PPI treatment significantly inhibited cell proliferation, arrested the cell cycle at G2/M phase and induced cell apoptosis of Y79 cells through the mitochondrial- dependent intrinsic pathway. Moreover, p53 is involved in PPI-induced cytotoxicity in human retinoblastoma Y-79 cells. Exposure to 10 μM PPI for 48 h dramatically induced the expression levels of p53, phosphorylated- p53 and acetylated-p53. Furthermore, blockade of p53 expression effectively attenuated PPI-induced cell cycle arrest and cell apoptosis in Y-79 cells. Result: These results demonstrated that PPI exhibits anti-proliferation effect on human retinoblastoma Y-79 cells through modulating p53 expression, stabilization and activation. This information shed light on the potential application of PPI in retinoblastoma therapy.


Author(s):  
Sofia Ferreira-Gonzalez ◽  
Daniel Rodrigo-Torres ◽  
Victoria L. Gadd ◽  
Stuart J. Forbes

AbstractCellular senescence is an irreversible cell cycle arrest implemented by the cell as a result of stressful insults. Characterized by phenotypic alterations, including secretome changes and genomic instability, senescence is capable of exerting both detrimental and beneficial processes. Accumulating evidence has shown that cellular senescence plays a relevant role in the occurrence and development of liver disease, as a mechanism to contain damage and promote regeneration, but also characterizing the onset and correlating with the extent of damage. The evidence of senescent mechanisms acting on the cell populations of the liver will be described including the role of markers to detect cellular senescence. Overall, this review intends to summarize the role of senescence in liver homeostasis, injury, disease, and regeneration.


PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e42150 ◽  
Author(s):  
Sascha Schäuble ◽  
Karolin Klement ◽  
Shiva Marthandan ◽  
Sandra Münch ◽  
Ines Heiland ◽  
...  

2008 ◽  
Vol 7 (8) ◽  
pp. 1309-1317 ◽  
Author(s):  
Iwona Migdal ◽  
Yulia Ilina ◽  
Markus J. Tamás ◽  
Robert Wysocki

ABSTRACT Cells slow down cell cycle progression in order to adapt to unfavorable stress conditions. Yeast (Saccharomyces cerevisiae) responds to osmotic stress by triggering G1 and G2 checkpoint delays that are dependent on the mitogen-activated protein kinase (MAPK) Hog1. The high-osmolarity glycerol (HOG) pathway is also activated by arsenite, and the hog1Δ mutant is highly sensitive to arsenite, partly due to increased arsenite influx into hog1Δ cells. Yeast cell cycle regulation in response to arsenite and the role of Hog1 in this process have not yet been analyzed. Here, we found that long-term exposure to arsenite led to transient G1 and G2 delays in wild-type cells, whereas cells that lack the HOG1 gene or are defective in Hog1 kinase activity displayed persistent G1 cell cycle arrest. Elevated levels of intracellular arsenite and “cross talk” between the HOG and pheromone response pathways, observed in arsenite-treated hog1Δ cells, prolonged the G1 delay but did not cause a persistent G1 arrest. In contrast, deletion of the SIC1 gene encoding a cyclin-dependent kinase inhibitor fully suppressed the observed block of G1 exit in hog1Δ cells. Moreover, the Sic1 protein was stabilized in arsenite-treated hog1Δ cells. Interestingly, Sic1-dependent persistent G1 arrest was also observed in hog1Δ cells during hyperosmotic stress. Taken together, our data point to an important role of the Hog1 kinase in adaptation to stress-induced G1 cell cycle arrest.


1998 ◽  
Vol 335 (1) ◽  
pp. 43-50
Author(s):  
Dong-Hua CHEN ◽  
Chin-Tin CHEN ◽  
Yong ZHANG ◽  
Mei-Ann LIU ◽  
Roberto CAMPOS-GONZALEZ ◽  
...  

We have shown previously that oncogenic Ras induces cell cycle arrest in activated Xenopus egg extracts [Pan, Chen and Lin (1994) J. Biol. Chem. 269, 5968–5975]. The cell cycle arrest correlates with the stimulation of a protein kinase activity that phosphorylates histone H2b in vitro (designated p96h2bk) [Chen and Pan (1994) J. Biol. Chem. 269, 28034–28043]. We report here that p96h2bk is likely to be p96ram, a protein of approx. 96 kDa that immunoreacts with a monoclonal antibody (Mk-1) raised against a synthetic peptide derived from a sequence highly conserved in Erk1/Erk2 (where Erk is extracellular-signal-regulated kinase). This is supported by two lines of evidence. First, activation/inactivation of p96h2bk correlates with upward/downward bandshifts of p96ram in polyacrylamide gels. Secondly, both p96h2bk and p96ram can be immunoprecipitated by antibody Mk-1. We also studied the activity of p96h2bk/p96ram in Xenopus oocytes and eggs. p96h2bk/p96ram was inactive in stage 6 oocytes, was active in unfertilized eggs, and became inactive again in eggs after fertilization. Since stage 6 oocytes are at G2-phase of the cell cycle, unfertilized eggs arrest at M-phase and eggs exit M-phase arrest after fertilization, the results thus indicate that p96h2bk/p96ram activity is cell cycle dependent. Moreover, microinjection of oncogenic Ras into fertilized eggs at the one-cell stage arrests the embryos at the two-cell stage, and this induced arrest is correlated with an inappropriate activation of p96h2bk/p96ram. The data are consistent with the concept that inappropriate activation of p96h2bk/p96ram plays a role in the cell cycle arrest induced by oncogenic Ras.


2018 ◽  
Vol 38 (17) ◽  
Author(s):  
Shakhawoat Hossain ◽  
Hiroaki Iwasa ◽  
Aradhan Sarkar ◽  
Junichi Maruyama ◽  
Kyoko Arimoto-Matsuzaki ◽  
...  

ABSTRACT RASSF6 is a member of the tumor suppressor Ras association domain family (RASSF) proteins. RASSF6 is frequently suppressed in human cancers, and its low expression level is associated with poor prognosis. RASSF6 regulates cell cycle arrest and apoptosis and plays a tumor suppressor role. Mechanistically, RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. However, RASSF6 also induces cell cycle arrest and apoptosis in a p53-negative background, which implies that the tumor suppressor function of RASSF6 does not depend solely on p53. In this study, we revealed that RASSF6 mediates cell cycle arrest and apoptosis via pRb. RASSF6 enhances the interaction between pRb and protein phosphatase. RASSF6 also enhances P16INK4A and P14ARF expression by suppressing BMI1. In this way, RASSF6 increases unphosphorylated pRb and augments the interaction between pRb and E2F1. Moreover, RASSF6 induces TP73 target genes via pRb and E2F1 in a p53-negative background. Finally, we confirmed that RASSF6 depletion induces polyploid cells in p53-negative HCT116 cells. In conclusion, RASSF6 behaves as a tumor suppressor in cancers with loss of function of p53, and pRb is implicated in this function of RASSF6.


Sign in / Sign up

Export Citation Format

Share Document