scholarly journals Nuclear Pnn/DRS Protein Binds to Spliced mRNPs and Participates in mRNA Processing and Export via Interaction with RNPS1

2003 ◽  
Vol 23 (20) ◽  
pp. 7363-7376 ◽  
Author(s):  
Chin Li ◽  
Ru-Inn Lin ◽  
Ming-Chih Lai ◽  
Pin Ouyang ◽  
Woan-Yuh Tarn

ABSTRACT Pnn/DRS protein is associated with desmosomes and colocalizes with splicing factors in nuclear speckled domains. The potential interaction of Pnn with RNPS1, a pre-mRNA splicing factor and a component of the exon-exon junction complex, prompted us to examine whether Pnn is involved in nuclear mRNA processing. By immunoprecipitation, we found that Pnn associates preferentially with mRNAs produced by splicing in vitro. Oligonucleotide-directed RNase H digestion revealed that Pnn binds to the spliced mRNAs at a position immediately upstream of the splice junction and that 5′ splice site utilization determines the location of Pnn in alternatively spliced mRNAs. Immunoprecipitation further showed that Pnn binds to mRNAs produced from a transiently expressed reporter in vivo. Although associated with mRNPs, Pnn is a nuclear-restricted protein as revealed by the heterokaryon assay. Overexpression of an amino-terminal fragment of Pnn that directly interacts with RNPS1 leads to blockage of pre-mRNA splicing. However, although suppression of Pnn expression shows no significant effect on splicing, it leads to some extent to nuclear accumulation of bulk poly(A)+ RNA. Therefore, Pnn may participate, via its interaction with RNPS1, in mRNA metabolism in the nucleus, including mRNA splicing and export.

2005 ◽  
Vol 25 (4) ◽  
pp. 1446-1457 ◽  
Author(s):  
Janeen H. Trembley ◽  
Sawako Tatsumi ◽  
Eiji Sakashita ◽  
Pascal Loyer ◽  
Clive A. Slaughter ◽  
...  

ABSTRACT Human RNPS1 was originally characterized as a pre-mRNA splicing activator in vitro and was shown to regulate alternative splicing in vivo. RNPS1 was also identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and a role for RNPS1 in postsplicing processes has been proposed. Here we demonstrate that RNPS1 incorporates into active spliceosomes, enhances the formation of the ATP-dependent A complex, and promotes the generation of both intermediate and final spliced products. RNPS1 is phosphorylated in vivo and interacts with the CK2 (casein kinase II) protein kinase. Serine 53 (Ser-53) of RNPS1 was identified as the major phosphorylation site for CK2 in vitro, and the same site is also phosphorylated in vivo. The phosphorylation status of Ser-53 significantly affects splicing activation in vitro, but it does not perturb the nuclear localization of RNPS1. In vivo experiments indicated that the phosphorylation of RNPS1 at Ser-53 influences the efficiencies of both splicing and translation. We propose that RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 phosphorylation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Saikat Bhattacharya ◽  
Michaella J. Levy ◽  
Ning Zhang ◽  
Hua Li ◽  
Laurence Florens ◽  
...  

AbstractHeterogeneous ribonucleoproteins (hnRNPs) are RNA binding molecules that are involved in key processes such as RNA splicing and transcription. One such hnRNP protein, hnRNP L, regulates alternative splicing (AS) by binding to pre-mRNA transcripts. However, it is unclear what factors contribute to hnRNP L-regulated AS events. Using proteomic approaches, we identified several key factors that co-purify with hnRNP L. We demonstrate that one such factor, the histone methyltransferase SETD2, specifically interacts with hnRNP L in vitro and in vivo. This interaction occurs through a previously uncharacterized domain in SETD2, the SETD2-hnRNP Interaction (SHI) domain, the deletion of which, leads to a reduced H3K36me3 deposition. Functionally, SETD2 regulates a subset of hnRNP L-targeted AS events. Our findings demonstrate that SETD2, by interacting with Pol II as well as hnRNP L, can mediate the crosstalk between the transcription and the splicing machinery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryosuke Nakamura ◽  
Nao Hiwatashi ◽  
Renjie Bing ◽  
Carina P. Doyle ◽  
Ryan C. Branski

AbstractVocal fold (VF) fibrosis is a major cause of intractable voice-related disability and reduced quality of life. Excision of fibrotic regions is suboptimal and associated with scar recurrence and/or further iatrogenic damage. Non-surgical interventions are limited, putatively related to limited insight regarding biochemical events underlying fibrosis, and downstream, the lack of therapeutic targets. YAP/TAZ integrates diverse cell signaling events and interacts with signaling pathways related to fibrosis, including the TGF-β/SMAD pathway. We investigated the expression of YAP/TAZ following vocal fold injury in vivo as well as the effects of TGF-β1 on YAP/TAZ activity in human vocal fold fibroblasts, fibroblast-myofibroblast transition, and TGF-β/SMAD signaling. Iatrogenic injury increased nuclear localization of YAP and TAZ in fibrotic rat vocal folds. In vitro, TGF-β1 activated YAP and TAZ in human VF fibroblasts, and inhibition of YAP/TAZ reversed TGF-β1-stimulated fibroplastic gene upregulation. Additionally, TGF-β1 induced localization of YAP and TAZ in close proximity to SMAD2/3, and nuclear accumulation of SMAD2/3 was inhibited by a YAP/TAZ inhibitor. Collectively, YAP and TAZ were synergistically activated with the TGF-β/SMAD pathway, and likely essential for the fibroplastic phenotypic shift in VF fibroblasts. Based on these data, YAP/TAZ may evolve as an attractive therapeutic target for VF fibrosis.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Chenjing Zhang ◽  
Xiaolu Zhou ◽  
Xiaoge Geng ◽  
Yu Zhang ◽  
Jingya Wang ◽  
...  

AbstractDysregulation of circular RNA (circRNA) expression is involved in the progression of cancer. Here, we aimed to study the potential function of hsa_circ_0006401 in colorectal cancer (CRC). CircRNA hsa_circ_0006401 expression levels in CRC and adjacent nontumor tissues were analyzed by real-time quantitative PCR (qRT-PCR) and circRNA in situ hybridization (RNA-ISH). Then, CRC cell proliferation was assessed by cell counting. Wound-healing and transwell assays were utilized to detect the effect of hsa_circ_0006401 on CRC migration. A circRNA-ORF construct was created, and a specific antibody against the splice junction of hsa_circ_0006401 was prepared. Finally, the proteins directly binding to hsa_circ_0006401 peptides were identified by immunoprecipitation combined with mass spectrometry. In our study, we found hsa_circ_0006401 was closely related to CRC metastasis and exhibited upregulated expression in metastatic CRC tissue samples. Proliferation and migration were inhibited in vitro when hsa_circ_0006401 expression was silenced. Downregulation of hsa_circ_0006401 expression decreased CRC proliferation and liver metastasis in vivo. A 198-aa peptide was encoded by sequences of the splice junction absent from col6a3. Hsa_circ_0006401 promoted CRC proliferation and migration by encoding the hsa_circ_0006401 peptide. Hsa_circ_0006401 peptides decreased the mRNA and protein level of the host gene col6a3 by promoting col6a3 mRNA stabilation. In conclusion, our study revealed that circRNAs generated from col6a3 that contain an open-reading frame (ORF) encode a novel 198-aa functional peptide and hsa_circ_0006401 peptides promote stability of the host gene col6a3 mRNA to promote CRC proliferation and metastasis.


1990 ◽  
Vol 10 (7) ◽  
pp. 3607-3618
Author(s):  
P Belenguer ◽  
M Caizergues-Ferrer ◽  
J C Labbé ◽  
M Dorée ◽  
F Amalric

Nucleolin is a ubiquitous multifunctional protein involved in preribosome assembly and associated with both nucleolar chromatin in interphase and nucleolar organizer regions on metaphasic chromosomes in mitosis. Extensive nucleolin phosphorylation by a casein kinase (CKII) occurs on serine in growing cells. Here we report that while CKII phosphorylation is achieved in interphase, threonine phosphorylation occurs during mitosis. We provide evidence that this type of in vivo phosphorylation involves a mammalian homolog of the cell cycle control Cdc2 kinase. In vitro M-phase H1 kinase from starfish oocytes phosphorylated threonines in a TPXK motif present nine times in the amino-terminal part of the protein. The same sites which matched the p34cdc2 consensus phosphorylation sequence were used in vivo during mitosis. We propose that successive Cdc2 and CKII phosphorylation could modulate nucleolin function in controlling cell cycle-dependent nucleolar function and organization. Our results, along with previous studies, suggest that while serine phosphorylation is related to nucleolin function in the control of rDNA transcription, threonine phosphorylation is linked to mitotic reorganization of nucleolar chromatin.


1993 ◽  
Vol 13 (9) ◽  
pp. 5377-5382
Author(s):  
B Datta ◽  
A M Weiner

U6 small nuclear RNA (snRNA) is the most highly conserved of the five spliceosomal snRNAs that participate in nuclear mRNA splicing. The proposal that U6 snRNA plays a key catalytic role in splicing [D. Brow and C. Guthrie, Nature (London) 337:14-15, 1989] is supported by the phylogenetic conservation of U6, the sensitivity of U6 to mutation, cross-linking of U6 to the vicinity of the 5' splice site, and genetic evidence for extensive base pairing between U2 and U6 snRNAs. We chose to mutate the phylogenetically invariant 41-ACAGAGA-47 and 53-AGC-55 sequences of human U6 because certain point mutations within the homologous regions of Saccharomyces cerevisiae U6 selectively block the first or second step of mRNA splicing. We found that both sequences are more tolerant to mutation in human cells (assayed by transient expression in vivo) than in S. cerevisiae (assayed by effects on growth or in vitro splicing). These differences may reflect different rate-limiting steps in the particular assays used or differential reliance on redundant RNA-RNA or RNA-protein interactions. The ability of mutations in U6 nucleotides A-45 and A-53 to selectively block step 2 of splicing in S. cerevisiae had previously been construed as evidence that these residues might participate directly in the second chemical step of splicing; an indirect, structural role seems more likely because the equivalent mutations have no obvious phenotype in the human transient expression assay.


2000 ◽  
Vol 113 (13) ◽  
pp. 2471-2483 ◽  
Author(s):  
I. Hofmann ◽  
C. Mertens ◽  
M. Brettel ◽  
V. Nimmrich ◽  
M. Schnolzer ◽  
...  

Plakophilin 1 and 2 (PKP1, PKP2) are members of the arm-repeat protein family. They are both constitutively expressed in most vertebrate cells, in two splice forms named a and b, and display a remarkable dual location: they occur in the nuclei of cells and, in epithelial cells, at the plasma membrane within the desmosomal plaques. We have shown by solid phase-binding assays that both PKP1a and PKP2a bind to intermediate filament (IF) proteins, in particular to cytokeratins (CKs) from epidermal as well as simple epithelial cells and, to some extent, to vimentin. In line with this we show that recombinant PKP1a binds strongly to IFs assembled in vitro from CKs 8/18, 5/14, vimentin or desmin and integrates them into thick (up to 120 nm in diameter) IF bundles extending for several microm. The basic amino-terminal, non-arm-repeat domain of PKP1a is necessary and sufficient for this specific interaction as shown by blot overlay and centrifugation experiments. In particular, the binding of PKP1a to IF proteins is saturable at an approximately equimolar ratio. In extracts from HaCaT cells, distinct soluble complexes containing PKP1a and desmoplakin I (DPI) have been identified by co-immunoprecipitation and sucrose density fractionation. The significance of these interactions of PKP1a with IF proteins on the one hand and desmoplakin on the other is discussed in relation to the fact that PKP1a is not bound - and does not bind - to extended IFs in vivo. We postulate that (1) effective cellular regulatory mechanisms exist that prevent plakophilins from unscheduled IF-binding, and (2) specific desmoplakin interactions with either PKP1, PKP2 or PKP3, or combinations thereof, are involved in the selective recruitment of plakophilins to the desmosomal plaques.


1992 ◽  
Vol 12 (9) ◽  
pp. 4084-4092
Author(s):  
P C McCabe ◽  
H Haubruck ◽  
P Polakis ◽  
F McCormick ◽  
M A Innis

The rap1A gene encodes a 21-kDa, ras-related GTP-binding protein (p21rap1A) of unknown function. A close structural homolog of p21rap1A (65% identity in the amino-terminal two-thirds) is the RSR1 gene product (Rsr1p) of Saccharomyces cerevisiae. Although Rsr1p is not essential for growth, its presence is required for nonrandom selection of bud sites. To assess the similarity of these proteins at the functional level, wild-type and mutant forms of p21rap1A were tested for complementation of activities known to be fulfilled by Rsr1p. Expression of p21rap1A, like multicopy expression of RSR1, suppressed the conditional lethality of a temperature-sensitive cdc24 mutation. Point mutations predicted to affect the localization of p21rap1A or its ability to cycle between GDP and GTP-bound states disrupted suppression of cdc24ts, while other mutations in the 61-65 loop region improved suppression. Expression of p21rap1A could not, however, suppress the random budding phenotype of rsr1 cells. p21rap1A also apparently interfered with the normal activity of Rsrlp, causing random budding in diploid wild-type cells, suggesting an inability of p21rap1A to interact appropriately with Rsr1p regulatory proteins. Consistent with this hypothesis, we found an Rsr1p-specific GTPase-activating protein (GAP) activity in yeast membranes which was not active toward p21rap1A, indicating that p21rap1A may be predominantly GTP bound in yeast cells. Coexpression of human Rap1-specific GAP suppressed the random budding due to expression of p21rap1A or its derivatives, including Rap1AVal-12. Although Rap1-specific GAP stimulated the GTPase of Rsr1p in vitro, it did not dominantly interfere with Rsr1p function in vivo. A chimera consisting of Rap1A1-165::Rsr1p166-272 did not exhibit normal Rsr1p function in the budding pathway. These results indicated that p21rap1A and Rsr1p share at least partial functional homology, which may have implications for p21rap1A function in mammalian cells.


1998 ◽  
Vol 275 (3) ◽  
pp. C870-C881 ◽  
Author(s):  
Ichiro Hisatome ◽  
Takayuki Morisaki ◽  
Hiroshi Kamma ◽  
Takako Sugama ◽  
Hiroko Morisaki ◽  
...  

AMP deaminase (AMPD) plays a central role in preserving the adenylate energy charge in myocytes following exercise and in producing intermediates for the citric acid cycle in muscle. Prior studies have demonstrated that AMPD1 binds to myosin heavy chain (MHC) in vitro; binding to the myofibril varies with the state of muscle contraction in vivo, and binding of AMPD1 to MHC is required for activation of this enzyme in myocytes. The present study has identified three domains in AMPD1 that influence binding of this enzyme to MHC using a cotransfection model that permits assessment of mutations introduced into the AMPD1 peptide. One domain that encompasses residues 178–333 of this 727-amino acid peptide is essential for binding of AMPD1 to MHC. This region of AMPD1 shares sequence similarity with several regions of titin, another MHC binding protein. Two additional domains regulate binding of this peptide to MHC in response to intracellular and extracellular signals. A nucleotide binding site, which is located at residues 660–674, controls binding of AMPD1 to MHC in response to changes in intracellular ATP concentration. Deletion analyses demonstrate that the amino-terminal 65 residues of AMPD1 play a critical role in modulating the sensitivity to ATP-induced inhibition of MHC binding. Alternative splicing of the AMPD1 gene product, which alters the sequence of residues 8–12, produces two AMPD1 isoforms that exhibit different MHC binding properties in the presence of ATP. These findings are discussed in the context of the various roles proposed for AMPD in energy production in the myocyte.


Sign in / Sign up

Export Citation Format

Share Document