scholarly journals Endogenous Assays of DNA Methyltransferases: Evidence for Differential Activities of DNMT1, DNMT2, and DNMT3 in Mammalian Cells In Vivo

2003 ◽  
Vol 23 (8) ◽  
pp. 2709-2719 ◽  
Author(s):  
Kui Liu ◽  
Yun Fei Wang ◽  
Carmen Cantemir ◽  
Mark T. Muller

ABSTRACT While CpG methylation can be readily analyzed at the DNA sequence level in wild-type and mutant cells, the actual DNA (cytosine-5) methyltransferases (DNMTs) responsible for in vivo methylation on genomic DNA are less tractable. We used an antibody-based method to identify specific endogenous DNMTs (DNMT1, DNMT1b, DNMT2, DNMT3a, and DNMT3b) that stably and selectively bind to genomic DNA containing 5-aza-2′-deoxycytidine (aza-dC) in vivo. Selective binding to aza-dC-containing DNA suggests that the engaged DNMT is catalytically active in the cell. DNMT1b is a splice variant of the predominant maintenance activity DNMT1, while DNMT2 is a well-conserved protein with homologs in plants, yeast, Drosophila, humans, and mice. Despite the presence of motifs essential for transmethylation activity, catalytic activity of DNMT2 has never been reported. The data here suggest that DNMT2 is active in vivo when the endogenous genome is the target, both in human and mouse cell lines. We quantified relative global genomic activity of DNMT1, -2, -3a, and -3b in a mouse teratocarcinoma cell line. DNMT1 and -3b displayed the greatest in vivo binding avidity for aza-dC-containing genomic DNA in these cells. This study demonstrates that individual DNMTs can be tracked and that their binding to genomic DNA can be quantified in mammalian cells in vivo. The different DNMTs display a wide spectrum of genomic DNA-directed activity. The use of an antibody-based tracking method will allow specific DNMTs and their DNA targets to be recovered and analyzed in a physiological setting in chromatin.

2002 ◽  
Vol 115 (9) ◽  
pp. 1803-1813 ◽  
Author(s):  
Ilaria Filesi ◽  
Alessio Cardinale ◽  
Sjaak van der Sar ◽  
Ian G. Cowell ◽  
Prim B. Singh ◽  
...  

The chromodomain (CD) is a highly conserved motif present in a variety of animal and plant proteins, and its probable role is to assemble a variety of macromolecular complexes in chromatin. The importance of the CD to the survival of mammalian cells has been tested. Accordingly, we have ablated CD function using two single-chain intracellular Fv (scFv) fragments directed against non-overlapping epitopes within the HP1 CD motif. The scFv fragments can recognize both CD motifs of HP1 and Polycomb (Pc) in vitro and, when expressed intracellularly, interact with and dislodge the HP1 protein(s) from their heterochromatin localization in vivo. Mouse and human fibroblasts expressing anti-chromodomain scFv fragments show a cell-lethal phenotype and an apoptotic morphology becomes apparent soon after transfection. The mechanism of cell death appears to be p53 independent, and the cells are only partly rescued by incubation with the wide spectrum caspase inhibitor Z-VAD fmk. We conclude that expression of anti-chromodomain intracellular antibodies is sufficient to trigger a p53-independent apoptotic pathway that is only partly dependent on the known Z-VAD-inhibitable caspases, suggesting that CD function is essential for cell survival.


2003 ◽  
Vol 23 (5) ◽  
pp. 1764-1774 ◽  
Author(s):  
J. Alan Diehl ◽  
Wensheng Yang ◽  
Ronald A. Rimerman ◽  
Hua Xiao ◽  
Andrew Emili

ABSTRACT The cyclin D-dependent kinase is a critical mediator of mitogen-dependent G1 phase progression in mammalian cells. Given the high incidence of cyclin D1 overexpression in human neoplasias, the nature and complexity of cyclin D complexes in vivo have been subjects of intense interest. Besides its catalytic partner, the nature and complexity of cyclin D complexes in vivo remain ambiguous. To address this issue, we purified native cyclin D1 complexes from proliferating mouse fibroblasts by affinity chromatography and began to identify and functionally characterize the associated proteins. In this report, we describe the identification of Hsc70 and its functional importance for cyclin D1 and cyclin D1-dependent kinase maturation. We demonstrate that Hsc70 associates with newly synthesized cyclin D1 and is a component of a mature, catalytically active cyclin D1/CDK4 holoenzyme complex. Our data suggest that Hsc70 promotes stabilization of newly synthesized cyclin D1, thereby increasing its availability for assembly with CDK4. In addition, our data demonstrate that Hsc70 remains bound to cyclin D1 following its assembly with CDK4 and Cip/Kip proteins, where it ensures the formation of a catalytically active complex.


2001 ◽  
Vol 154 (4) ◽  
pp. 815-828 ◽  
Author(s):  
Rui Lin ◽  
Bonnie J. Warn-Cramer ◽  
Wendy E. Kurata ◽  
Alan F. Lau

The mechanism by which v-Src disrupts connexin (Cx)43 intercellular gap junctional communication (GJC) is not clear. In this study, we determined that Tyr247 (Y247) and the previously identified Tyr265 (Y265) site of Cx43 were the primary phosphorylation targets for activated Src in vitro. We established an in vivo experimental system by stably expressing v-Src and wild-type (wt) Cx43, or Y247F, Y265F, or Y247F/Y265F Cx43 mutants in a Cx43 knockout mouse cell line. Wt and mutant Cx43 localized to the plasma membrane in the absence or presence of v-Src. When coexpressed with v-Src, the Y247F, Y265F, and Y247F/Y265F Cx43 mutants exhibited significantly reduced levels of tyrosine phosphorylation compared with wt Cx43, indicating that Y247 and Y265 were phosphorylation targets of v-Src in vivo. Most importantly, GJC established by the Y247F, Y265F, and Y247F/Y265F Cx43 mutants was resistant to disruption by v-Src. Furthermore, we did not find evidence for a role for mitogen-activated protein kinase in mediating the disruption of GJC by v-Src. We conclude that phosphorylation on Y247 and Y265 of Cx43 is responsible for disrupting GJC in these mammalian cells expressing v-Src.


2006 ◽  
Vol 26 (23) ◽  
pp. 8770-8780 ◽  
Author(s):  
Hiroyuki Minami ◽  
Junko Takahashi ◽  
Asami Suto ◽  
Yasushi Saitoh ◽  
Ken-ichi Tsutsumi

ABSTRACT A region encompassing the rat aldolase B gene (aldB) promoter acts as a chromosomal origin of DNA replication (origin) in rat aldolase B-nonexpressing hepatoma cells. To examine replicator function of the aldB origin, we constructed recombinant mouse cell lines in which the rat aldB origin and the mutant derivatives were inserted into the same position at the mouse chromosome 8 by cre-mediated recombination. Nascent strand abundance assays revealed that the rat origin acts as a replicator at the ectopic mouse locus. Mutation of site C in the rat origin, which binds an Orc1-binding protein AlF-C in vitro, resulted in a significant reduction of the replicator activity in the mouse cells. Chromatin immunoprecipitation (ChIP) assays indicated that the reduction of replicator activity was paralleled with the reduced binding of AlF-C and Orc1, suggesting that sequence-specific binding of AlF-C to the ectopic rat origin leads to enhanced replicator activity in cooperation with Orc1. Involvement of AlF-C in replication in vivo was further examined for the aldB origin at its original rat locus and for a different rat origin identified in the present study, which contained an AlF-C-binding site. ChIP assays revealed that both replication origins bind AlF-C and Orc1. We think that the results presented here may represent one mode of origin recognition in mammalian cells.


1997 ◽  
Vol 110 (10) ◽  
pp. 1159-1168 ◽  
Author(s):  
V.R. Otrin ◽  
M. McLenigan ◽  
M. Takao ◽  
A.S. Levine ◽  
M. Protic

A UV-damaged DNA binding protein (UV-DDB) is the major source of UV-damaged DNA binding activity in mammalian cell extracts. This activity is defective in at least some xeroderma pigmentosum group E (XP-E) patients; microinjection of the UV-DDB protein into their fibroblasts corrects nucleotide excision repair (NER). In an in vitro reconstituted NER system, small amounts of UV-DDB stimulate repair synthesis a few fold. After exposure to UV, mammalian cells show an early dose-dependent inhibition of the extractable UV-DDB activity; this inhibition may reflect a tight association of the binding protein with UV-damaged genomic DNA. To investigate the dynamics and location of UV-DDB with respect to damaged chromatin in vivo, we utilized nuclear fractionation and specific antibodies and detected translocation of the p127 component of UV-DDB from a loose to a tight association with chromatinized DNA immediately after UV treatment. A similar redistribution was found for other NER proteins, i.e. XPA, RP-A and PCNA, suggesting their tighter association with genomic DNA after UV. These studies revealed a specific protein-protein interaction between UV-DDB/p127 and RP-A that appears to enhance binding of both proteins to UV-damaged DNA in vitro, providing evidence for the involvement of UV-DDB in the damage-recognition step of NER. Moreover, the kinetics of the reappearance of extractable UV-DDB activity after UV treatment of human cells with differing repair capacities positively correlate with the cell's capacity to repair 6–4 pyrimidine dimers (6–4 PD) in the whole genome, a result consistent with an in vivo role for UV-DDB in recognizing this type of UV lesion.


2007 ◽  
Vol 75 (11) ◽  
pp. 5135-5147 ◽  
Author(s):  
Pamela Schnupf ◽  
Jianmin Zhou ◽  
Alexander Varshavsky ◽  
Daniel A. Portnoy

ABSTRACT The intracellular pathogen Listeria monocytogenes escapes from a phagosomal compartment into the cytosol by secreting the pore-forming cytolysin listeriolysin O (LLO). During the proliferation of L. monocytogenes bacteria in the mammalian cell cytosol, the secreted LLO is targeted for degradation by the ubiquitin system. We report here that LLO is a substrate of the ubiquitin-dependent N-end rule pathway, which recognizes LLO through its N-terminal Lys residue. Specifically, we demonstrated by reverse-genetic and pharmacological methods that LLO was targeted for degradation by the N-end rule pathway in reticulocyte extracts and mouse NIH 3T3 cells and after its secretion by intracellular bacteria into the mouse cell cytosol. Replacing the N-terminal Lys of LLO with a stabilizing residue such as Val increased the in vivo half-life of LLO but did not strongly affect the intracellular growth or virulence of L. monocytogenes. Nevertheless, this replacement decreased the virulence of L. monocytogenes by nearly twofold, suggesting that a destabilizing N-terminal residue of LLO may stem from positive selection during the evolution of this and related bacteria. A double mutant strain of L. monocytogenes in which upregulated secretion of LLO was combined with a stabilizing N-terminal residue was severely toxic to infected mammalian cells, resulting in reduced intracellular growth of bacteria and an ∼100-fold-lower level of virulence. In summary, we showed that LLO is degraded by the N-end rule pathway and that the degradation of LLO can reduce the toxicity of L. monocytogenes during infection, a property of LLO that may have been selected for its positive effects on fitness during the evolution of L. monocytogenes.


2010 ◽  
Vol 30 (17) ◽  
pp. 4245-4253 ◽  
Author(s):  
Peng Liu ◽  
Song Nie ◽  
Bing Li ◽  
Zhong-Qiang Yang ◽  
Zhi-Mei Xu ◽  
...  

ABSTRACT Biological methylation is a fundamental enzymatic reaction for a variety of substrates in multiple cellular processes. Mammalian N6amt1 was thought to be a homologue of bacterial N 6-adenine DNA methyltransferases, but its substrate specificity and physiological importance remain elusive. Here, we demonstrate that N6amt1 functions as a protein methyltransferase for the translation termination factor eRF1 in mammalian cells both in vitro and in vivo. Mass spectrometry analysis indicated that about 70% of the endogenous eRF1 is methylated at the glutamine residue of the conserved GGQ motif. To address the physiological significance of eRF1 methylation, we disrupted the N6amt1 gene in the mouse. Loss of N6amt1 led to early embryonic lethality. The postimplantation development of mutant embryos was impaired, resulting in degeneration around embryonic day 6.5. This is in contrast to what occurs in Escherichia coli and Saccharomyces cerevisiae, which can survive without the N6amt1 homologues. Thus, N6amt1 is the first glutamine-specific protein methyltransferase characterized in vivo in mammals and methylation of eRF1 by N6amt1 might be essential for the viability of early embryos.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


Author(s):  
Gustav Ofosu

Platinum-thymine has been found to be a potent antitumor agent, which is quite soluble in water, and lack nephrotoxicity as the dose-limiting factor. The drug has been shown to interact with DNA and inhibits DNA, RNA and protein synthesis in mammalian cells in vitro. This investigation was undertaken to elucidate the cytotoxic effects of piatinum-thymine on sarcoma-180 cells in vitro ultrastructurally, Sarcoma-180 tumor bearing mice were treated with intraperitoneal injection of platinum-thymine 40mg/kg. A concentration of 60μg/ml dose of platinum-thymine was used in in vitro experiments. Treatments were at varying time intervals of 3, 7 and 21 days for in vivo experiments, and 30, 60 and 120 min., 6, 12, and 24th in vitro. Controls were not treated with platinum-thymine.Electron microscopic analyses of the treated cells in vivo and in vitro showed drastic cytotoxic effect.


1972 ◽  
Vol 71 (2_Suppla) ◽  
pp. S369-S380 ◽  
Author(s):  
Francis T. Kenney ◽  
Kai-Lin Lee ◽  
Charles D. Stiles

ABSTRACT Analyses of the response of hydrocortisone-induced tyrosine transaminase in cultured H-35 cells to inhibitors of translation (cycloheximide, puromycin) suggest: (1) that bound ribosomes stabilize messenger RNA in vivo; (2) that messenger is degraded at a rate determined by the rate of translation. Since specific messenger RNAs of mammalian cells are degraded at quite different rates, there may be extensive heterogeneity either in the rate at which ribosomes traverse different messengers or in the number of ribosomes which translate specific messenger RNAs.


Sign in / Sign up

Export Citation Format

Share Document