scholarly journals Inhibition of the Jun N-Terminal Protein Kinase Pathway by SHIP-1, a Lipid Phosphatase That Interacts with the Adaptor Molecule Dok-3

2004 ◽  
Vol 24 (6) ◽  
pp. 2332-2343 ◽  
Author(s):  
Jeffrey D. Robson ◽  
Dominique Davidson ◽  
André Veillette

ABSTRACT Dok-3 is a Dok-related adaptor expressed in B cells and macrophages. Previously, we reported that Dok-3 is an inhibitor of B-cell activation in A20 B cells and that it associates with SHIP-1, a 5′ inositol-specific lipid phosphatase, as well as Csk, a negative regulator of Src kinases. Here, we demonstrate that Dok-3 suppresses B-cell activation by way of its interaction with SHIP-1, rather than Csk. Our biochemical analyses showed that the Dok-3-SHIP-1 complex acts by selectively inhibiting the B-cell receptor (BCR)-evoked activation of the Jun N-terminal protein kinase (JNK) cascade without affecting overall protein tyrosine phosphorylation or activation of previously described SHIP-1 targets like Btk and Akt/PKB. Studies of B cells derived from SHIP-1-deficient mice showed that BCR-triggered activation of JNK is enhanced in the absence of SHIP-1, implying that the Dok-3-SHIP-1 complex (or a related mechanism) is a physiological negative regulator of the JNK cascade in normal B cells. Together, these data elucidate the mechanism by which Dok-3 inhibits B-cell activation. Furthermore, they provide evidence that SHIP-1 can be a negative regulator of JNK signaling in B cells.

2009 ◽  
Vol 206 (12) ◽  
pp. 2671-2683 ◽  
Author(s):  
Michael W. Tusche ◽  
Lesley A. Ward ◽  
Frances Vu ◽  
Doug McCarthy ◽  
Miguel Quintela-Fandino ◽  
...  

B cell activation factor of the TNF family (BAFF) activates noncanonical nuclear factor κB (NF-κB) heterodimers that promote B cell survival. We show that although MALT1 is largely dispensable for canonical NF-κB signaling downstream of the B cell receptor, the absence of MALT1 results in impaired BAFF-induced phosphorylation of NF-κB2 (p100), p100 degradation, and RelB nuclear translocation in B220+ B cells. This corresponds with impaired survival of MALT1−/− marginal zone (MZ) but not follicular B cells in response to BAFF stimulation in vitro. MALT1−/− MZ B cells also express higher amounts of TRAF3, a known negative regulator of BAFF receptor–mediated signaling, and TRAF3 was found to interact with MALT1. Furthermore, phenotypes associated with overexpression of BAFF, including increased MZ B cell numbers, elevated serum immunoglobulin titers, and spontaneous germinal center formation, were found to be dependent on B cell–intrinsic MALT1 expression. Our results demonstrate a novel role for MALT1 in biological outcomes induced by BAFF-mediated signal transduction.


2017 ◽  
Vol 114 (44) ◽  
pp. E9328-E9337 ◽  
Author(s):  
Dan Su ◽  
Stijn Vanhee ◽  
Rebeca Soria ◽  
Elin Jaensson Gyllenbäck ◽  
Linda M. Starnes ◽  
...  

B cell receptor signaling and downstream NF-κB activity are crucial for the maturation and functionality of all major B cell subsets, yet the molecular players in these signaling events are not fully understood. Here we use several genetically modified mouse models to demonstrate that expression of the multifunctional BRCT (BRCA1 C-terminal) domain-containing PTIP (Pax transactivation domain-interacting protein) chromatin regulator is controlled by B cell activation and potentiates steady-state and postimmune antibody production in vivo. By examining the effects of PTIP deficiency in mice at various ages during ontogeny, we demonstrate that PTIP promotes bone marrow B cell development as well as the neonatal establishment and subsequent long-term maintenance of self-reactive B-1 B cells. Furthermore, we find that PTIP is required for B cell receptor- and T:B interaction-induced proliferation, differentiation of follicular B cells during germinal center formation, and normal signaling through the classical NF-κB pathway. Together with the previously identified role for PTIP in promoting sterile transcription at the Igh locus, the present results establish PTIP as a licensing factor for humoral immunity that acts at several junctures of B lineage maturation and effector cell differentiation by controlling B cell activation.


2014 ◽  
Vol 211 (2) ◽  
pp. 365-379 ◽  
Author(s):  
Ana M. Avalos ◽  
Angelina M. Bilate ◽  
Martin D. Witte ◽  
Albert K. Tai ◽  
Jiang He ◽  
...  

Valency requirements for B cell activation upon antigen encounter are poorly understood. OB1 transnuclear B cells express an IgG1 B cell receptor (BCR) specific for ovalbumin (OVA), the epitope of which can be mimicked using short synthetic peptides to allow antigen-specific engagement of the BCR. By altering length and valency of epitope-bearing synthetic peptides, we examined the properties of ligands required for optimal OB1 B cell activation. Monovalent engagement of the BCR with an epitope-bearing 17-mer synthetic peptide readily activated OB1 B cells. Dimers of the minimal peptide epitope oriented in an N to N configuration were more stimulatory than their C to C counterparts. Although shorter length correlated with less activation, a monomeric 8-mer peptide epitope behaved as a weak agonist that blocked responses to cell-bound peptide antigen, a blockade which could not be reversed by CD40 ligation. The 8-mer not only delivered a suboptimal signal, which blocked subsequent responses to OVA, anti-IgG, and anti-kappa, but also competed for binding with OVA. Our results show that fine-tuning of BCR-ligand recognition can lead to B cell nonresponsiveness, activation, or inhibition.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2578-2578
Author(s):  
Mrinmoy Sanyal ◽  
Rosemary Fernandez ◽  
Shoshana Levy

Abstract CD81 is a component of the CD19/CD21 coreceptor complex in B cells. This tetraspanin molecule was previously shown to enable membrane reorganization in B cells responding to complement-bound antigens. Here we stimulated B cells via their B cell receptor (BCR) and demonstrate that Cd81−/− B cells fluxed higher intracellular free calcium ion along with increased phosphorylation of PLCγ2 and Syk. The stimulated Cd81−/− B cells also proliferated faster and secreted higher amounts of antibodies. Moreover, activation of the TLR4 pathway in Cd81−/− B cells induced increased proliferation and antibody secretion. Furthermore, Cd81−/− mice mounted a significantly higher immune response to T-cell independent antigens than their wildtype counterparts. Finally, analysis of Cd81−/− B cells that were generated by bone marrow transplantation into Rag1−/− mice confirmed a cell intrinsic hyperactive phenotype. Taken together, these results indicate that CD81 plays a negative role in B cell activation in vitro and in vivo.


2016 ◽  
Vol 113 (5) ◽  
pp. E558-E567 ◽  
Author(s):  
Jing Wang ◽  
Shan Tang ◽  
Zhengpeng Wan ◽  
Yiren Gao ◽  
Yiyun Cao ◽  
...  

Antigen binding to the B-cell receptor (BCR) induces several responses, resulting in B-cell activation, proliferation, and differentiation. However, it has been difficult to study these responses due to their dynamic, fast, and transient nature. Here, we attempted to solve this problem by developing a controllable trigger point for BCR and antigen recognition through the construction of a photoactivatable antigen, caged 4-hydroxy-3-nitrophenyl acetyl (caged-NP). This photoactivatable antigen system in combination with live cell and single molecule imaging techniques enabled us to illuminate the previously unidentified B-cell probing termination behaviors and the precise BCR sorting mechanisms during B-cell activation. B cells in contact with caged-NP exhibited probing behaviors as defined by the unceasing extension of membrane pseudopods in random directions. Further analyses showed that such probing behaviors are cell intrinsic with strict dependence on F-actin remodeling but not on tonic BCR signaling. B-cell probing behaviors were terminated within 4 s after photoactivation, suggesting that this response was sensitive and specific to BCR engagement. The termination of B-cell probing was concomitant with the accumulation response of the BCRs into the BCR microclusters. We also determined the Brownian diffusion coefficient of BCRs from the same B cells before and after BCR engagement. The analysis of temporally segregated single molecule images of both BCR and major histocompatibility complex class I (MHC-I) demonstrated that antigen binding induced trapping of BCRs into the BCR microclusters is a fundamental mechanism for B cells to acquire antigens.


2006 ◽  
Vol 203 (9) ◽  
pp. 2157-2164 ◽  
Author(s):  
Meggan Mackay ◽  
Anfisa Stanevsky ◽  
Tao Wang ◽  
Cynthia Aranow ◽  
Margaret Li ◽  
...  

The inappropriate expansion and activation of autoreactive memory B cells and plasmablasts contributes to loss of self-tolerance in systemic lupus erythematosus (SLE). Defects in the inhibitory Fc receptor, FcγRIIB, have been shown to contribute to B cell activation and autoimmunity in several mouse models of SLE. In this paper, we demonstrate that expression of FcγRIIB is routinely up-regulated on memory B cells in the peripheral blood of healthy controls, whereas up-regulation of FcγRIIB is considerably decreased in memory B cells of SLE patients. This directly correlates with decreased FcγRIIB-mediated suppression of B cell receptor–induced calcium (Ca2+) response in those B cells. We also found substantial overrepresentation of African-American patients among those who failed to up-regulate FcγRIIB. These results suggest that the inhibitory receptor, FcγRIIB, may be impaired at a critical checkpoint in SLE in the regulation of memory B cells; thus, FcγRIIB represents a novel target for therapeutic interventions in this disease.


Blood ◽  
2007 ◽  
Vol 110 (1) ◽  
pp. 259-266 ◽  
Author(s):  
Chee-Hoe Ng ◽  
Shengli Xu ◽  
Kong-Peng Lam

p62dok and Dok-3 are members of the Dok family of adaptors found in B cells, with the former cloned as a substrate of the p210bcr/abl oncoprotein in Ph + chronic myelogenous leukemia. A role for p62dok in FcγRIIB–mediated negative regulation of B-cell proliferation had been established previously. Here, we generated Dok-3−/− mice to assess the function of Dok-3 in B cells. Mice lacking Dok-3 have normal B-cell development but possess higher level of IgM antibodies in their sera. In comparison to wild-type mice, Dok-3−/− mice mounted significantly enhanced humoral immune responses to T cell–independent type I and II antigens. Dok-3–deficient B cells hyperproliferated, exhibited elevated level of calcium signaling as well as enhanced activation of NF-κB, JNK, and p38MAPK in response to B-cell receptor (BCR) engagement. In the absence of Dok-3, the localization of the inhibitory phosphatase SHIP-1 to the plasma membrane is intact while its phosphorylation is compromised, suggesting that Dok-3 could function to facilitate or sustain the activation of SHIP-1. The phenotype and responses of Dok-3−/− mice and B cells could be differentiated from those of the Dok-1−/− counterparts. Hence, we propose that Dok-3 plays a distinct and nonredundant role in the negative regulation of BCR signaling.


2021 ◽  
Vol 118 (43) ◽  
pp. e2108957118
Author(s):  
Wen Lu ◽  
Katarzyna M. Skrzypczynska ◽  
Arthur Weiss

T cell antigen receptor (TCR) and B cell antigen receptor (BCR) signaling are initiated and tightly regulated by Src-family kinases (SFKs). SFKs positively regulate TCR signaling in naïve T cells but have both positive and negative regulatory roles in BCR signaling in naïve B cells. The proper regulation of their activities depends on the opposing actions of receptor tyrosine phosphatases CD45 and CD148 and the cytoplasmic tyrosine kinase C-terminal Src kinase Csk. Csk is a major negative regulator of SFKs. Using a PP1-analog-sensitive Csk (CskAS) system, we have previously shown that inhibition of CskAS increases SFK activity, leading to augmentation of responses to weak TCR stimuli in T cells. However, the effects of Csk inhibition in B cells were not known. In this study, we surprisingly found that inhibition of CskAS led to marked inhibition of BCR-stimulated cytoplasmic free calcium increase and Erk activation despite increased SFK activation in B cells, contrasting the effects observed in T cells. Further investigation revealed that acute CskAS inhibition suppressed BCR-mediated phosphatidylinositol 3,4,5-trisphosphate (PIP3) production in B cells. Restoring PIP3 levels in B cells by CD19 cross-linking or SHIP1 deficiency eliminated the negative regulatory effect of CskAS inhibition. This reveals the critical role of Csk in maintaining an appropriate level of SFK activity and regulating PIP3 amounts as a means of compensating for SFK fluctuations to prevent inappropriate B cell activation. This regulatory mechanism controlling PIP3 amounts may also contribute to B cell anergy and self-tolerance.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 707-707 ◽  
Author(s):  
Melania Capasso ◽  
Mandeep K Bhamrah ◽  
Robert S Boyd ◽  
Kelvin Cain ◽  
Karen Pulford ◽  
...  

Abstract HVCN1 is a highly-conserved voltage-gated proton channel. Voltage-gated proton currents have been recorded in lymphocytes but their functions in B cells remain unknown. We isolated HVCN1 in a proteomic survey of plasma membrane proteins in mantle cell lymphoma (MCL) in leukemic phase. In normal lymphocytes, HVCN1 expression was restricted to the B-cell lineage; HVCN1 was highly expressed in mantle zone cells but down-regulated in germinal center (GC) cells undergoing receptor affinity maturation and class-switch recombination (CSR). Highest level expression was also observed in Chronic Lymphocytic Leukemia (CLL) cells from the peripheral blood. In MCL tumors, HVCN1 was expressed in circulating cells but absent from involved lymph nodes, whereas in diffuse large B cell lymphoma (DLBCL), its expression correlated with cases with a low proliferation index. Thus, in both primary and neoplastic B cells, HVCN1 expression appears to be associated with a non-proliferative phenotype. In human primary resting B cells and B cell lines, HVCN1 directly interacted with the B cell receptor (BCR) complex, as shown by Igβ and HVCN1 reciprocal immunoprecipitation experiments. We also found by confocal microscopy and subcellular fractionation, that upon BCR engagement the channel was internalized with the antigen receptor and the two proteins co-migrated to the endo-lysosomal, MHC class II (MHC-II) containing compartments (MIICs). When overexpressed in a hen egg lysozyme (HEL)-specific B cell clone, LK35.2, HVCN1 showed a basal phosphorylation which increased with HEL stimulation. The increased phosphorylation corresponded to an increase in proton conductance, termed “enhanced gating mode” and it was PKC dependent. We then asked whether HVCN1 over-expression could influence MHC II antigen presentation and if the effect could be mediated by changes in MIICs pH. Indeed, presentation of HEL peptides to a T cell clone was impaired in LK35.2 and A20 D1.3 cells, where HVCN1 had been re-introduced; effect was stronger for plate-bound antigen than for soluble antigen. The reduced antigen presentation was accompanied by an increase in endo-lysosomal pH, from pH4.9 ± 0.2 to 6.3 ± 0.1 (which may reflect HVCN1 channel-mediated proton flux out of the organelles), as measured with an anti-IgM antibody conjugated to a pH sensitive dye in HVCN1 over-expressing cells. Evidently, the presence of HVCN1 leads to increased endo-lysosomal pH, consistent with H+ current from the lysosomal compartment into the cytosol. Hence, active antigen presenting cells, like GC cells, might down-regulate HVCN1 expression to maximize the effect of antigen presentation. In order to investigate the role of HVCN1 in vivo, we used a HVCN1-deficient mouse line generated by genetrap insertion. These mice showed no obvious changes in numbers or composition of B-cell subpopulations. Immunization of HVCN1-deficient mice with a T-dependent antigen resulted in a defect in CSR to all IgG subclasses, particularly marked for the IgG2b, whereas in contrast, no differences were observed in IgM secretion, suggesting a pivotal role for HVCN1 during antigen-driven B-cell activation and subsequent CSR. HVCN1 may influence B-cell activation through alteration of reactive oxygen species (ROS) as HVCN1-deficient B cells showed reduced ROS production following BCR activation, a sign of suboptimal NADPH oxidase activity. It has been postulated that proton channels are required to counterbalance the electrogenic activity of NADPH oxidase during ROS production. Our data suggest that this mechanism also occurs in vivo and shed new light on the role of ROS in B cell activation and downstream effects.


Author(s):  
Teresa Sadras ◽  
Lai N. Chan ◽  
Gang Xiao ◽  
Markus Müschen

Unlike other cell types, B cells undergo multiple rounds of V(D)J recombination and hypermutation to evolve high-affinity antibodies. Reflecting high frequencies of DNA double-strand breaks, adaptive immune protection by B cells comes with an increased risk of malignant transformation. In addition, the vast majority of newly generated B cells express an autoreactive B cell receptor (BCR). Thus, B cells are under intense selective pressure to remove autoreactive and premalignant clones. Despite stringent negative selection, B cells frequently give rise to autoimmune disease and B cell malignancies. In this review, we discuss mechanisms that we term metabolic gatekeepers to eliminate pathogenic B cell clones on the basis of energy depletion. Chronic activation signals from autoreactive BCRs or transforming oncogenes increase energy demands in autoreactive and premalignant B cells. Thus, metabolic gatekeepers limit energy supply to levels that are insufficient to fuel either a transforming oncogene or hyperactive signaling from an autoreactive BCR. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 16 is February 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document