scholarly journals In Vivo Dynamics of Swi6 in Yeast: Evidence for a Stochastic Model of Heterochromatin

2004 ◽  
Vol 24 (8) ◽  
pp. 3157-3167 ◽  
Author(s):  
Thierry Cheutin ◽  
Stanislaw A. Gorski ◽  
Karen M. May ◽  
Prim B. Singh ◽  
Tom Misteli

ABSTRACT The mechanism for transcriptional silencing of pericentric heterochromatin is conserved from fission yeast to mammals. Silenced genome regions are marked by epigenetic methylation of histone H3, which serves as a binding site for structural heterochromatin proteins. In the fission yeast Schizosaccharomyces pombe, the major structural heterochromatin protein is Swi6. To gain insight into Swi6 function in vivo, we have studied its dynamics in the nucleus of living yeast. We demonstrate that, in contrast to mammalian cells, yeast heterochromatin domains undergo rapid, large-scale motions within the nucleus. Similar to the situation in mammalian cells, Swi6 does not permanently associate with these chromatin domains but binds only transiently to euchromatin and heterochromatin. Swi6 binding dynamics are dependent on growth status and on the silencing factors Clr4 and Rik1, but not Clr1, Clr2, or Clr3. By comparing the kinetics of mutant Swi6 proteins in swi6− and swi6+ strains, we demonstrate that homotypic protein-protein interactions via the chromoshadow domain stabilize Swi6 binding to chromatin in vivo. Kinetic modeling allowed quantitative estimation of residence times and indicated the existence of at least two kinetically distinct populations of Swi6 in heterochromatin. The observed dynamics of Swi6 binding are consistent with a stochastic model of heterochromatin and indicate evolutionary conservation of heterochromatin protein binding properties from mammals to yeast.

Author(s):  
Wanling Song ◽  
Anna L. Duncan ◽  
Mark S.P. Sansom

AbstractG protein-coupled receptors (GPCRs) play key roles in cellular signalling. GPCRs are suggested to form dimers and higher order oligomers in response to activation. However, we do not fully understand GPCR activation at larger scales and in an in vivo context. We have characterised oligomeric configurations of the adenosine 2a receptor (A2aR) by combining large-scale molecular dynamics simulations with Markov state models. Receptor activation results in enhanced oligomerisation, more diverse oligomer populations, and a more connected oligomerisation network. The active state conformation of the A2aR shifts protein-protein association interfaces to those involving intracellular loop ICL3 and transmembrane helix TM6. Binding of PIP2 to A2aR stabilises protein-protein interactions via PIP2-mediated association interfaces. These results indicate that A2aR oligomerisation is responsive to the local membrane lipid environment. This in turn suggests a modulatory effect on A2aR whereby a given oligomerisation profile favours the dynamic formation of specific supra-molecular signalling complexes.


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 142 ◽  
Author(s):  
Arman Kulyyassov ◽  
Vasily Ogryzko

Protein–protein interactions of core pluripotency transcription factors play an important role during cell reprogramming. Cell identity is controlled by a trio of transcription factors: Sox2, Oct4, and Nanog. Thus, methods that help to quantify protein–protein interactions may be useful for understanding the mechanisms of pluripotency at the molecular level. Here, a detailed protocol for the detection and quantitative analysis of in vivo protein–protein proximity of Sox2 and Oct4 using the proximity-utilizing biotinylation (PUB) method is described. The method is based on the coexpression of two proteins of interest fused to a biotin acceptor peptide (BAP)in one case and a biotin ligase enzyme (BirA) in the other. The proximity between the two proteins leads to more efficient biotinylation of the BAP, which can be either detected by Western blotting or quantified using proteomics approaches, such as a multiple reaction monitoring (MRM) analysis. Coexpression of the fusion proteins BAP-X and BirA-Y revealed strong biotinylation of the target proteins when X and Y were, alternatively, the pluripotency transcription factors Sox2 and Oct4, compared with the negative control where X or Y was green fluorescent protein (GFP), which strongly suggests that Sox2 and Oct4 come in close proximity to each other and interact.


2005 ◽  
Vol 25 (11) ◽  
pp. 4552-4564 ◽  
Author(s):  
Pernette J. Verschure ◽  
Ineke van der Kraan ◽  
Wim de Leeuw ◽  
Johan van der Vlag ◽  
Anne E. Carpenter ◽  
...  

ABSTRACT Changes in chromatin structure are a key aspect in the epigenetic regulation of gene expression. We have used a lac operator array system to visualize by light microscopy the effect of heterochromatin protein 1 (HP1) α (HP1α) and HP1β on large-scale chromatin structure in living mammalian cells. The structure of HP1, containing a chromodomain, a chromoshadow domain, and a hinge domain, allows it to bind to a variety of proteins. In vivo targeting of an enhanced green fluorescent protein-tagged HP1-lac repressor fusion to a lac operator-containing, gene-amplified chromosome region causes local condensation of the higher-order chromatin structure, recruitment of the histone methyltransferase SETDB1, and enhanced trimethylation of histone H3 lysine 9. Polycomb group proteins of both the HPC/HPH and the EED/EZH2 complexes, which are involved in the heritable repression of gene activity, are not recruited to the amplified chromosome region by HP1α and HP1β in vivo targeting. HP1α targeting causes the recruitment of endogenous HP1β to the chromatin region and vice versa, indicating a direct interaction between the two HP1 homologous proteins. Our findings indicate that HP1α and HP1β targeting is sufficient to induce heterochromatin formation.


Author(s):  
Michael J. Ziegler ◽  
Klaus Yserentant ◽  
Valentin Dunsing ◽  
Volker Middel ◽  
Antoni J. Gralak ◽  
...  

AbstractDirect control of protein interactions by chemically induced protein proximity holds great potential for both cell and synthetic biology as well as therapeutic applications. Low toxicity, orthogonality and excellent cell permeability are important criteria for chemical inducers of proximity (CIPs), in particular for in vivo applications. Here, we present the use of the agrochemical mandipropamid (Mandi) as a highly efficient CIP in cell culture systems and living organisms. Mandi specifically induces complex formation between a sixfold mutant of the plant hormone receptor pyrabactin resistance 1 (PYR1) and abscisic acid insensitive (ABI). It is orthogonal to other plant hormone-based CIPs and rapamycin-based CIP systems. We demonstrate the applicability of the Mandi system for rapid and efficient protein translocation in mammalian cells and zebrafish embryos, protein network shuttling and manipulation of endogenous proteins.


2000 ◽  
Vol 20 (3) ◽  
pp. 816-824 ◽  
Author(s):  
Zhaohua Tang ◽  
Tiffany Kuo ◽  
Jenny Shen ◽  
Ren-Jang Lin

ABSTRACT Arginine/serine-rich (RS) domain-containing proteins and their phosphorylation by specific protein kinases constitute control circuits to regulate pre-mRNA splicing and coordinate splicing with transcription in mammalian cells. We present here the finding that similar SR networks exist in Schizosaccharomyces pombe. We previously showed that Dsk1 protein, originally described as a mitotic regulator, displays high activity in phosphorylating S. pombe Prp2 protein (spU2AF59), a homologue of human U2AF65. We now demonstrate that Dsk1 also phosphorylates two recently identified fission yeast proteins with RS repeats, Srp1 and Srp2, in vitro. The phosphorylated proteins bear the same phosphoepitope found in mammalian SR proteins. Consistent with its substrate specificity, Dsk1 forms kinase-competent complexes with those proteins. Furthermore,dsk1 + gene determines the phenotype ofprp2 + overexpression, providing in vivo evidence that Prp2 is a target for Dsk1. The dsk1-null mutant strain became severely sick with the additional deletion of a related kinase gene. Significantly, human SR protein-specific kinase 1 (SRPK1) complements the growth defect of the double-deletion mutant. In conjunction with the resemblance of dsk1 + andSRPK1 in sequence homology, biochemical properties, and overexpression phenotypes, the complementation result indicates that SRPK1 is a functional homologue of Dsk1. Collectively, our studies illustrate the conserved SR networks in S. pombe consisting of RS domain-containing proteins and SR protein-specific kinases and thus establish the importance of the networks in eucaryotic organisms.


2000 ◽  
Vol 348 (3) ◽  
pp. 585-590 ◽  
Author(s):  
Eileen ROJO-NIERSBACH ◽  
Debra MORLEY ◽  
Stephanie HECK ◽  
Norbert LEHMING

In the present study we present a new method that allows for the selection of protein interactions in mammalian cells. We have used this system to verify two interactions previously characterized in vitro. (1) The interaction between human TATA-binding protein 1 and nuclear factor ĸB and (2) the association of Homo sapiens nuclear autoantigen SP100B with human heterochromatin protein 1α, a protein implicated in chromatin remodelling. We observe for the first time that these interactions also occur in vivo. One protein was fused to the N-terminal half of ubiquitin, while the interacting partner was fused to the C-terminal half of ubiquitin, that was itself linked to guanine phosphoryltransferase 2 (gpt2) modified to begin with an arginine residue. Upon interaction of both proteins, ubiquitin is reconstituted, and its association with the Rgpt2 reporter is subsequently cleaved off by ubiquitin-processing enzymes. The presence of arginine in the Rgpt2 gene product leads to the degradation of the product by the N-end rule pathway. In the human fibroblast cell line HT1080HPRT- (that is deficient in the enzyme for hypoxanthine-guanine phosphoribosyltransferase) cells in which interaction between both proteins of interest occurs can then be selected for by hypoxanthine/aminopterin/thymine medium and counterselected against by 6-thioguanine medium. This method provides a suitable alternative to the yeast two-hybrid system and is generally applicable.


2011 ◽  
Vol 438 (3) ◽  
pp. 495-503 ◽  
Author(s):  
Ratnesh K. Srivastav ◽  
Susan Schwede ◽  
Malte Klaus ◽  
Jessica Schwermann ◽  
Matthias Gaestel ◽  
...  

Protein–protein interactions are essential for almost all cellular processes, hence understanding these processes mainly depends on the identification and characterization of the relevant protein–protein interactions. In the present paper, we introduce the concept of TRS (trans-SUMOylation), a new method developed to identify and verify protein–protein interactions in mammalian cells in vivo. TRS utilizes Ubc9-fusion proteins that trans-SUMOylate co-expressed interacting proteins. Using TRS, we analysed interactions of 65 protein pairs co-expressed in HEK (human embryonic kidney)-293 cells. We identified seven new and confirmed 16 known protein interactions, which were determined via endogenous SUMOylation sites of the binding partners or by using SUMOylation-site tags respectively. Four of the new protein interactions were confirmed by GST (glutathione transferase) pull-down and the p38α–Edr2 interaction was verified by co-localization analysis. Functionally, this p38α–Edr2 interaction could possibly be involved in the recruitment of p38α to the polycomb chromatin-remodelling complex to phosphorylate Bmi1. We also used TRS to characterize protein-interaction domains of the protein kinase pairs p38α–MK2 [MK is MAPK (mitogen-activated protein kinase)-activated protein kinase] and ERK3 (extracellular-signal-regulated kinase 3)–MK5 and of the p38α–p53 complex. The ability of TRS to monitor protein interactions in mammalian cells in vivo at levels similar to endogenous expression makes it an excellent new tool that can help in defining the protein interactome of mammalian cells.


2020 ◽  
Vol 5 ◽  
pp. 20
Author(s):  
Rachel Cooley ◽  
Neesha Kara ◽  
Ning Sze Hui ◽  
Jonathan Tart ◽  
Chloë Roustan ◽  
...  

Targeting the interaction of proteins with weak binding affinities or low solubility represents a particular challenge for drug screening. The NanoLucâ ® Binary Technology (NanoBiTâ ®) was originally developed to detect protein-protein interactions in live mammalian cells. Here we report the successful translation of the NanoBit cellular assay into a biochemical, cell-free format using mammalian cell lysates. We show that the assay is suitable for the detection of both strong and weak protein interactions such as those involving the binding of RAS oncoproteins to either RAF or phosphoinositide 3-kinase (PI3K) effectors respectively, and that it is also effective for the study of poorly soluble protein domains such as the RAS binding domain of PI3K. Furthermore, the RAS interaction assay is sensitive and responds to both strong and weak RAS inhibitors. Our data show that the assay is robust, reproducible, cost-effective, and can be adapted for small and large-scale screening approaches. The NanoBit Biochemical Assay offers an attractive tool for drug screening against challenging protein-protein interaction targets, including the interaction of RAS with PI3K.


Sign in / Sign up

Export Citation Format

Share Document