scholarly journals The heat shock response in HeLa cells is accompanied by elevated expression of the c-fos proto-oncogene.

1987 ◽  
Vol 7 (10) ◽  
pp. 3452-3458 ◽  
Author(s):  
G K Andrews ◽  
M A Harding ◽  
J P Calvet ◽  
E D Adamson

Several known inducers of the heat shock response (heat stress, arsenite, and heavy metals) were shown to cause a significant elevation of c-fos mRNA in HeLa cells. Heat stress resulted in a time- and temperature-dependent prolonged elevation in the level of c-fos mRNA, which was accompanied by increased translation of c-fos protein and its appearance in the nucleus. Elevated expression of c-fos during heat stress was paralleled by induction of hsp 70 mRNA, while levels of c-myc and metallothionein mRNAs declined. Treatment of HeLa cells with arsenite or heavy metals also resulted in increased levels of hsp 70, as well as c-fos mRNA. Although elevated expression of c-fos was prevented by inhibitors of RNA synthesis, analysis of relative rates of gene transcription showed that during heat stress there was a negligible change in c-fos transcription. Therefore, the enhanced expression of c-fos during the heat shock response is likely to occur primarily through posttranscriptional processes. Cycloheximide was also shown to significantly increase the c-fos mRNA level in HeLa cells. There results are consistent with the observation that these inducers of the heat shock response, as well as cycloheximide, repress protein synthesis and suggest that the increase in the level of c-fos mRNA is caused by an inhibition of protein synthesis. This supports the hypothesis that c-fos mRNA is preferentially stabilized under conditions which induce the heat shock response, perhaps by decreased synthesis of a short-lived protein which regulates c-fos mRNA turnover.

1987 ◽  
Vol 7 (10) ◽  
pp. 3452-3458
Author(s):  
G K Andrews ◽  
M A Harding ◽  
J P Calvet ◽  
E D Adamson

Several known inducers of the heat shock response (heat stress, arsenite, and heavy metals) were shown to cause a significant elevation of c-fos mRNA in HeLa cells. Heat stress resulted in a time- and temperature-dependent prolonged elevation in the level of c-fos mRNA, which was accompanied by increased translation of c-fos protein and its appearance in the nucleus. Elevated expression of c-fos during heat stress was paralleled by induction of hsp 70 mRNA, while levels of c-myc and metallothionein mRNAs declined. Treatment of HeLa cells with arsenite or heavy metals also resulted in increased levels of hsp 70, as well as c-fos mRNA. Although elevated expression of c-fos was prevented by inhibitors of RNA synthesis, analysis of relative rates of gene transcription showed that during heat stress there was a negligible change in c-fos transcription. Therefore, the enhanced expression of c-fos during the heat shock response is likely to occur primarily through posttranscriptional processes. Cycloheximide was also shown to significantly increase the c-fos mRNA level in HeLa cells. There results are consistent with the observation that these inducers of the heat shock response, as well as cycloheximide, repress protein synthesis and suggest that the increase in the level of c-fos mRNA is caused by an inhibition of protein synthesis. This supports the hypothesis that c-fos mRNA is preferentially stabilized under conditions which induce the heat shock response, perhaps by decreased synthesis of a short-lived protein which regulates c-fos mRNA turnover.


1998 ◽  
Vol 64 (8) ◽  
pp. 3063-3065 ◽  
Author(s):  
Michelle L. Deegenaars ◽  
Kenneth Watson

ABSTRACT Heat stress tolerance was examined in the thermophilic enteric yeast Arxiozyma telluris. Heat shock acquisition of thermotolerance and synthesis of heat shock proteins hsp 104, hsp 90, hsp 70, and hsp 60 were induced by a mild heat shock at temperatures from 35 to 40°C for 30 min. The results demonstrate that a yeast which occupies a specialized ecological niche exhibits a typical heat shock response.


2003 ◽  
Vol 60 (4) ◽  
pp. 460-470 ◽  
Author(s):  
Susan G Lund ◽  
Mervyn E.A Lund ◽  
Bruce L Tufts

The purpose of this study was to examine the heat shock protein (Hsp) 70 mRNA and protein response in several tissues of Miramichi brook trout (Salvelinus fontinalis) under both acute and extended heat stress conditions to determine the utility of the red blood cell (rbc) heat shock response as a biomarker of sublethal temperature stress. Red blood cells consistently produced one of the highest responses of all of the tissues examined. Recovery of Hsp 70 mRNA following acute temperature increase required between 24 h and 48 h. In contrast, Hsp 70 protein levels remained significantly elevated for more than 48 h after the heat stress was terminated. During a 6-day extended (23°C) heat stress, rbc Hsp 70 mRNA returned to control levels between 72 and 144 h, whereas Hsp 70 protein was still significantly elevated after 6 days. Thus, although Hsp 70 mRNA proved to be a more sensitive indicator of heat stress in all tissues examined, Hsp 70 protein levels were more sustained. This study confirms the utility of rbcs as a biomarker tissue of thermal stress in fish and indicates that water temperatures presently being reached in brook trout habitats in Canada are capable of inducing a significant heat shock response in this species.


2004 ◽  
Vol 313 (4) ◽  
pp. 863-870 ◽  
Author(s):  
Lucio Lagunas ◽  
C.Matthew Bradbury ◽  
Andrei Laszlo ◽  
Clayton R Hunt ◽  
David Gius

1988 ◽  
Vol 90 (1) ◽  
pp. 51-58 ◽  
Author(s):  
A. Muller-Taubenberger ◽  
J. Hagmann ◽  
A. Noegel ◽  
G. Gerisch

Ubiquitin is a highly conserved, multifunctional protein, which is implicated in the heat-shock response of eukaryotes. The differential expression of the multiple ubiquitin genes in Dictyostelium discoideum was investigated under various stress conditions. Growing D. discoideum cells express four major ubiquitin transcripts of sizes varying from 0.6 to 1.9 kb. Upon heat shock three additional ubiquitin mRNAs of 0.9, 1.2 and 1.4 kb accumulate within 30 min. The same three transcripts are expressed in response to cold shock or cadmium treatment. Inhibition of protein synthesis by cycloheximide leads to a particularly strong accumulation of the larger ubiquitin transcripts, which code for polyubiquitins. Possible mechanisms regulating the expression of ubiquitin transcripts upon heat shock and other stresses are discussed.


2007 ◽  
Vol 189 (24) ◽  
pp. 8818-8827 ◽  
Author(s):  
Diana L. Williams ◽  
Tana L. Pittman ◽  
Mike Deshotel ◽  
Sandra Oby-Robinson ◽  
Issar Smith ◽  
...  

ABSTRACT Mycobacterium leprae, a major human pathogen, grows poorly at 37°C. The basis for its inability to survive at elevated temperatures was investigated. We determined that M. leprae lacks a protective heat shock response as a result of the lack of transcriptional induction of the alternative sigma factor genes sigE and sigB and the major heat shock operons, HSP70 and HSP60, even though heat shock promoters and regulatory circuits for these genes appear to be intact. M. leprae sigE was found to be capable of complementing the defective heat shock response of mycobacterial sigE knockout mutants only in the presence of a functional mycobacterial sigH, which orchestrates the mycobacterial heat shock response. Since the sigH of M. leprae is a pseudogene, these data support the conclusion that a key aspect of the defective heat shock response in M. leprae is the absence of a functional sigH. In addition, 68% of the genes induced during heat shock in M. tuberculosis were shown to be either absent from the M. leprae genome or were present as pseudogenes. Among these is the hsp/acr2 gene, whose product is essential for M. tuberculosis survival during heat shock. Taken together, these results suggest that the reduced ability of M. leprae to survive at elevated temperatures results from the lack of a functional transcriptional response to heat shock and the absence of a full repertoire of heat stress response genes, including sigH.


2014 ◽  
Vol 44 ◽  
pp. 119-125 ◽  
Author(s):  
Isaac M. Sleadd ◽  
Marissa Lee ◽  
Daniel O. Hassumani ◽  
Tonya M.A. Stecyk ◽  
Otto K. Zeitz ◽  
...  

2000 ◽  
Vol 203 (15) ◽  
pp. 2331-2339 ◽  
Author(s):  
G.E. Hofmann ◽  
B.A. Buckley ◽  
S. Airaksinen ◽  
J.E. Keen ◽  
G.N. Somero

The heat-shock response, the enhanced expression of one or more classes of molecular chaperones termed heat-shock proteins (hsps) in response to stress induced by high temperatures, is commonly viewed as a ‘universal’ characteristic of organisms. We examined the occurrence of the heat-shock response in a highly cold-adapted, stenothermal Antarctic teleost fish, Trematomus bernacchii, to determine whether this response has persisted in a lineage that has encountered very low and stable temperatures for at least the past 14–25 million years. The patterns of protein synthesis observed in in vivo metabolic labelling experiments that involved injection of (35)S-labelled methionine and cysteine into whole fish previously subjected to a heat stress of 10 degrees C yielded no evidence for synthesis of any size class of heat-shock protein. Parallel in vivo labelling experiments with isolated hepatocytes similarly showed significant amounts of protein synthesis, but no indication of enhanced expression of any class of hsp. The heavy metal cadmium, which is known to induce synthesis of hsps, also failed to alter the pattern of proteins synthesized in hepatocytes. Although stress-induced chaperones could not be detected under any of the experimental condition used, solid-phase antibody (western) analysis revealed that a constitutively expressed 70 kDa chaperone was present in this species, as predicted on the basis of requirements for chaperoning during protein synthesis. Amounts of the constitutively expressed 70 kDa chaperone increased in brain, but not in gill, during 22 days of acclimation to 5 degrees C. The apparent absence of a heat-shock response in this highly stenothermal species is interpreted as an indication that a physiological capacity observed in almost all other organisms has been lost as a result of the absence of positive selection during evolution at stable sub-zero temperatures. Whether the loss of the heat-shock response is due to dysfunctional genes for inducible hsps (loss of open reading frames or functional regulatory regions), unstable messenger RNAs, the absence of a functional heat-shock factor or some other lesion remains to be determined.


Genetics ◽  
1990 ◽  
Vol 124 (4) ◽  
pp. 949-955
Author(s):  
V K Mohl ◽  
G D Bennett ◽  
R H Finnell

Abstract Lymphocytes from adult mice bearing a known difference in genetic susceptibility to teratogen-induced exencephaly (SWV/SD, and DBA/2J) were evaluated for changes in protein synthesis following an in vivo heat treatment. Particular attention was paid to changes indicative of the heat shock response, a highly conserved response to environmental insult consisting of induction of a few, highly conserved proteins with simultaneous decreases in normal protein synthesis. The duration of heat shock protein induction in lymphocytes was found to be increased by 1 hr in the teratogen-sensitive SWV/SD strain as compared to the resistant DBA/2J strain. Densitometric analysis revealed a significant decrease in the relative synthesis of at least two non-heat shock proteins (36 kD and 45 kD) in the SWV/SD lymphocytes as compared to DBA/2J cells. The increased sensitivity of protein synthesis to hyperthermia in the SWV/SD lymphocytes were lost in the F1 progeny of reciprocal crosses between SWV/SD and DBA/2J mouse strains. Sensitivity to hyperthermia-induced exencephaly is recessive to resistance in these crosses. The relationship between altered protein synthesis and teratogen susceptibility is discussed.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yehong Huang ◽  
Wurihan Wurihan ◽  
Bin Lu ◽  
Yi Zou ◽  
Yuxuan Wang ◽  
...  

Cells reprogram their transcriptome in response to stress, such as heat shock. In free-living bacteria, the transcriptomic reprogramming is mediated by increased DNA-binding activity of heat shock sigma factors and activation of genes normally repressed by heat-induced transcription factors. In this study, we performed transcriptomic analyses to investigate heat shock response in the obligate intracellular bacterium Chlamydia trachomatis, whose genome encodes only three sigma factors and a single heat-induced transcription factor. Nearly one-third of C. trachomatis genes showed statistically significant (≥1.5-fold) expression changes 30 min after shifting from 37 to 45°C. Notably, chromosomal genes encoding chaperones, energy metabolism enzymes, type III secretion proteins, as well as most plasmid-encoded genes, were differentially upregulated. In contrast, genes with functions in protein synthesis were disproportionately downregulated. These findings suggest that facilitating protein folding, increasing energy production, manipulating host activities, upregulating plasmid-encoded gene expression, and decreasing general protein synthesis helps facilitate C. trachomatis survival under stress. In addition to relieving negative regulation by the heat-inducible transcriptional repressor HrcA, heat shock upregulated the chlamydial primary sigma factor σ66 and an alternative sigma factor σ28. Interestingly, we show for the first time that heat shock downregulates the other alternative sigma factor σ54 in a bacterium. Downregulation of σ54 was accompanied by increased expression of the σ54 RNA polymerase activator AtoC, thus suggesting a unique regulatory mechanism for reestablishing normal expression of select σ54 target genes. Taken together, our findings reveal that C. trachomatis utilizes multiple novel survival strategies to cope with environmental stress and even to replicate. Future strategies that can specifically target and disrupt Chlamydia’s heat shock response will likely be of therapeutic value.


Sign in / Sign up

Export Citation Format

Share Document