scholarly journals RidA Proteins Protect against Metabolic Damage by Reactive Intermediates

2020 ◽  
Vol 84 (3) ◽  
Author(s):  
Jessica L. Irons ◽  
Kelsey Hodge-Hanson ◽  
Diana M. Downs

The Rid (YjgF/YER057c/UK114) protein superfamily was first defined by sequence homology with available protein sequences from bacteria, archaea, and eukaryotes (L. Parsons, N. Bonander, E. Eisenstein, M. Gilson, et al., Biochemistry 42:80–89, 2003, https://doi.org/10.1021/bi020541w). The archetypal subfamily, RidA (reactive intermediate deaminase A), is found in all domains of life, with the vast majority of free-living organisms carrying at least one RidA homolog.

2021 ◽  
Vol 118 (47) ◽  
pp. e2102750118
Author(s):  
Suhyun Kim ◽  
Ilnam Kang ◽  
Jin-Won Lee ◽  
Che Ok Jeon ◽  
Stephen J. Giovannoni ◽  
...  

Heme, a porphyrin ring complexed with iron, is a metalloprosthetic group of numerous proteins involved in diverse metabolic and respiratory processes across all domains of life, and is thus considered essential for respiring organisms. Several microbial groups are known to lack the de novo heme biosynthetic pathway and therefore require exogenous heme from the environment. These heme auxotroph groups are largely limited to pathogens, symbionts, or microorganisms living in nutrient-replete conditions, whereas the complete absence of heme biosynthesis is extremely rare in free-living organisms. Here, we show that the acI lineage, a predominant and ubiquitous free-living bacterial group in freshwater habitats, is auxotrophic for heme, based on the experimental or genomic evidence. We found that two recently cultivated acI isolates require exogenous heme for their growth. One of the cultured acI isolates also exhibited auxotrophy for riboflavin. According to whole-genome analyses, all (n = 20) isolated acI strains lacked essential enzymes necessary for heme biosynthesis, indicating that heme auxotrophy is a conserved trait in this lineage. Analyses of >24,000 representative genomes for species clusters of the Genome Taxonomy Database revealed that heme auxotrophy is widespread across abundant but not-yet-cultivated microbial groups, including Patescibacteria, Marinisomatota (SAR406), Actinomarinales (OM1), and Marine groups IIb and III of Euryarchaeota. Our findings indicate that heme auxotrophy is a more common phenomenon than previously thought, and may lead to use of heme as a growth factor to increase the cultured microbial diversity.


2021 ◽  
Author(s):  
Suhyun Kim ◽  
Ilnam Kang ◽  
Jin-Won Lee ◽  
Che-Ok Jeon ◽  
Stephen J. Giovannoni ◽  
...  

Heme, a porphyrin ring complexed with iron, is a metalloprosthetic group of numerous proteins involved in diverse metabolic and respiratory processes across all domains of life, and is thus considered essential for respiring organisms1,2. Several microbial groups are known to lack the de novo heme biosynthetic pathway and therefore require exogenous heme from the environment3. These heme auxotroph groups are largely limited to pathogens4,5, symbionts6,7, or microorganisms living in nutrient-replete conditions8, whereas the complete absence of heme biosynthesis is extremely rare in free-living organisms9. Here, we show that the acI lineage, a predominant and ubiquitous free-living bacterial group in freshwater habitats, is auxotrophic for heme. We found that two recently cultivated acI isolates10 require exogenous heme for their growth. According to whole-genome analyses, all (n=20) isolated acI strains lacked essential enzymes necessary for heme biosynthesis, indicating that heme auxotrophy is a conserved trait in this lineage. Analyses of >24,000 representative genomes for species clusters of the Genome Taxonomy Database (GTDB) revealed that heme auxotrophy is widespread across abundant but not-yet-cultivated microbial groups, including Patescibacteria, Marinisomatota (SAR406), Actinomarinales (OM1), and marine group III Euryarchaeota. Our findings indicate that heme auxotrophy is a more common phenomenon than previously thought, and may lead to use of heme as a growth factor to increase the cultured microbial diversity.


2019 ◽  
Vol 16 (4) ◽  
pp. 294-302 ◽  
Author(s):  
Shahid Akbar ◽  
Maqsood Hayat ◽  
Muhammad Kabir ◽  
Muhammad Iqbal

Antifreeze proteins (AFPs) perform distinguishable roles in maintaining homeostatic conditions of living organisms and protect their cell and body from freezing in extremely cold conditions. Owing to high diversity in protein sequences and structures, the discrimination of AFPs from non- AFPs through experimental approaches is expensive and lengthy. It is, therefore, vastly desirable to propose a computational intelligent and high throughput model that truly reflects AFPs quickly and accurately. In a sequel, a new predictor called “iAFP-gap-SMOTE” is proposed for the identification of AFPs. Protein sequences are expressed by adopting three numerical feature extraction schemes namely; Split Amino Acid Composition, G-gap di-peptide Composition and Reduce Amino Acid alphabet composition. Usually, classification hypothesis biased towards majority class in case of the imbalanced dataset. Oversampling technique Synthetic Minority Over-sampling Technique is employed in order to increase the instances of the lower class and control the biasness. 10-fold cross-validation test is applied to appraise the success rates of “iAFP-gap-SMOTE” model. After the empirical investigation, “iAFP-gap-SMOTE” model obtained 95.02% accuracy. The comparison suggested that the accuracy of” iAFP-gap-SMOTE” model is higher than that of the present techniques in the literature so far. It is greatly recommended that our proposed model “iAFP-gap-SMOTE” might be helpful for the research community and academia.


2012 ◽  
Vol 56 (7) ◽  
pp. 3481-3491 ◽  
Author(s):  
Michael Widmann ◽  
Jürgen Pleiss ◽  
Peter Oelschlaeger

ABSTRACTMetallo-β-lactamases (MBLs) are enzymes that hydrolyze β-lactam antibiotics, resulting in bacterial resistance to these drugs. These proteins have caused concerns due to their facile transference, broad substrate spectra, and the absence of clinically useful inhibitors. To facilitate the classification, nomenclature, and analysis of MBLs, an automated database system was developed, the Metallo-β-Lactamase Engineering Database (MBLED) (http://www.mbled.uni-stuttgart.de). It contains information on MBLs retrieved from the NCBI peptide database while strictly following the nomenclature by Jacoby and Bush (http://www.lahey.org/Studies/) and the generally accepted class B β-lactamase (BBL) standard numbering scheme for MBLs. The database comprises 597 MBL protein sequences and enables systematic analyses of these sequences. A systematic analysis employing the database resulted in the generation of mutation profiles of assigned IMP- and VIM-type MBLs, the identification of five MBL protein entries from the NCBI peptide database that were inconsistent with the Jacoby and Bush nomenclature, and the identification of 15 new IMP candidates and 9 new VIM candidates. Furthermore, the database was used to identify residues with high mutation frequencies and variability (mutation hot spots) that were unexpectedly distant from the active site located in the ββ sandwich: positions 208 and 266 in the IMP family and positions 215 and 258 in the VIM family. We expect that the MBLED will be a valuable tool for systematically cataloguing and analyzing the increasing number of MBLs being reported.


2017 ◽  
Vol 9 (3) ◽  
pp. 465-471 ◽  
Author(s):  
J. Ryan Shipley ◽  
Julian Kapoor ◽  
Richard A. Dreelin ◽  
David W. Winkler

2017 ◽  
Author(s):  
Morgan N. Price ◽  
Adam P. Arkin

AbstractLarge-scale genome sequencing has identified millions of protein-coding genes whose function is unknown. Many of these proteins are similar to characterized proteins from other organisms, but much of this information is missing from annotation databases and is hidden in the scientific literature. To make this information accessible, PaperBLAST uses EuropePMC to search the full text of scientific articles for references to genes. PaperBLAST also takes advantage of curated resources that link protein sequences to scientific articles (Swiss-Prot, GeneRIF, and EcoCyc). PaperBLAST’s database includes over 700,000 scientific articles that mention over 400,000 different proteins. Given a protein of interest, PaperBLAST quickly finds similar proteins that are discussed in the literature and presents snippets of text from relevant articles or from the curators. PaperBLAST is available at http://papers.genomics.lbl.gov/.


Author(s):  
Juan Guzman ◽  
Atena Sadat Sombolestani ◽  
Anja Poehlein ◽  
Rolf Daniel ◽  
Ilse Cleenwerck ◽  
...  

A novel bacterium designated G55GPT and pertaining to the family Acetobacteraceae was isolated from the gut of the Madagascar hissing cockroach Gromphadorhina portentosa. The Gram-negative cells were rod-shaped and non-motile. The complete 16S rRNA sequence of the strain G55GPT showed the highest pairwise similarity to Gluconacetobacter johannae CFN-Cf-55T (95.35 %), suggesting it represents a potential new genus of the family Acetobacteraceae . Phylogenetic analysis based on 16S rRNA gene and 106 orthologous housekeeping protein sequences revealed that G55GPT forms a monophyletic clade with the genus Commensalibacter , which thus far has also been isolated exclusively from insects. The G55GPT genome size was 2.70 Mbp, and the G+C content was 45.4 mol%, which is lower than most acetic acid bacteria (51–68 mol%) but comparable to Swingsia samuiensis AH83T (45.1 mol%) and higher than Commensalibacter intestini A911T (36.8 mol%). Overall genome relatedness indices based on gene and protein sequences strongly supported the assignment of G55GPT to a new genus within the family Acetobacteraceae . The percentage of conserved proteins, which is a useful metric for genus differentiation, was below 54 % when comparing G55GPT to type strains of acetic acid bacteria, thus strongly supporting our hypothesis that G55GPT is a member of a yet-undescribed genus. The fatty acid composition of G55GPT differed from that of closely related acetic acid bacteria, particularly given the presence of C19 : 1  ω9c/ω11c and the absence of C14 : 0 and C14 : 0 2-OH fatty acids. Strain G55GPT also differed in terms of metabolic features such as its ability to produce acid from d-mannitol, and its inability to produce acetic acid from ethanol or to oxidize glycerol to dihydroxyacetone. Based on the results of combined genomic, phenotypic and phylogenetic characterizations, isolate G55GPT (=LMG 31394T=DSM 111244T) is considered to represent a new species in a new genus, for which we propose the name Entomobacter blattae gen. nov., sp. nov.


2014 ◽  
Vol 13 (2) ◽  
pp. 141-154 ◽  
Author(s):  
Andrew Clarke

AbstractLiving organisms on Earth are characterized by three necessary features: a set of internal instructions encoded in DNA (software), a suite of proteins and associated macromolecules providing a boundary and internal structure (hardware), and a flux of energy. In addition, they replicate themselves through reproduction, a process that renders evolutionary change inevitable in a resource-limited world. Temperature has a profound effect on all of these features, and yet life is sufficiently adaptable to be found almost everywhere water is liquid. The thermal limits to survival are well documented for many types of organisms, but the thermal limits to completion of the life cycle are much more difficult to establish, especially for organisms that inhabit thermally variable environments. Current data suggest that the thermal limits to completion of the life cycle differ between the three major domains of life, bacteria, archaea and eukaryotes. At the very highest temperatures only archaea are found with the current high-temperature limit for growth being 122 °C. Bacteria can grow up to 100 °C, but no eukaryote appears to be able to complete its life cycle above ∼60 °C and most not above 40 °C. The lower thermal limit for growth in bacteria, archaea, unicellular eukaryotes where ice is present appears to be set by vitrification of the cell interior, and lies at ∼−20 °C. Lichens appear to be able to grow down to ∼−10 °C. Higher plants and invertebrates living at high latitudes can survive down to ∼−70 °C, but the lower limit for completion of the life cycle in multicellular organisms appears to be ∼−2 °C.


2014 ◽  
Vol 37 ◽  
pp. 99-104 ◽  
Author(s):  
M. Golestaninasab ◽  
M. Malek ◽  
A. Roohi ◽  
A.R. Karbassi ◽  
E. Amoozadeh ◽  
...  

2008 ◽  
Vol 191 (1) ◽  
pp. 298-309 ◽  
Author(s):  
Catalina Arango Pinedo ◽  
Daniel J. Gage

ABSTRACT The HPrK kinase/phosphatase is a common component of the phosphotransferase system (PTS) of gram-positive bacteria and regulates catabolite repression through phosphorylation/dephosphorylation of its substrate, the PTS protein HPr, at a conserved serine residue. Phosphorylation of HPr by HPrK also affects additional phosphorylation of HPr by the PTS enzyme EI at a conserved histidine residue. Sinorhizobium meliloti can live as symbionts inside legume root nodules or as free-living organisms and is one of the relatively rare gram-negative bacteria known to have a gene encoding HPrK. We have constructed S. meliloti mutants that lack HPrK or that lack key amino acids in HPr that are likely phosphorylated by HPrK and EI. Deletion of hprK in S. meliloti enhanced catabolite repression caused by succinate, as did an S53A substitution in HPr. Introduction of an H22A substitution into HPr alleviated the strong catabolite repression phenotypes of strains carrying ΔhprK or hpr(S53A) mutations, demonstrating that HPr-His22-P is needed for strong catabolite repression. Furthermore, strains with a hpr(H22A) allele exhibited relaxed catabolite repression. These results suggest that HPrK phosphorylates HPr at the serine-53 residue, that HPr-Ser53-P inhibits phosphorylation at the histidine-22 residue, and that HPr-His22-P enhances catabolite repression in the presence of succinate. Additional experiments show that ΔhprK mutants overproduce exopolysaccharides and form nodules that do not fix nitrogen.


Sign in / Sign up

Export Citation Format

Share Document