scholarly journals Moonlighting Proteins in Yeasts

2008 ◽  
Vol 72 (1) ◽  
pp. 197-210 ◽  
Author(s):  
Carlos Gancedo ◽  
Carmen-Lisset Flores

SUMMARY Proteins able to participate in unrelated biological processes have been grouped under the generic name of moonlighting proteins. Work with different yeast species has uncovered a great number of moonlighting proteins and shown their importance for adequate functioning of the yeast cell. Moonlighting activities in yeasts include such diverse functions as control of gene expression, organelle assembly, and modification of the activity of metabolic pathways. In this review, we consider several well-studied moonlighting proteins in different yeast species, paying attention to the experimental approaches used to identify them and the evidence that supports their participation in the unexpected function. Usually, moonlighting activities have been uncovered unexpectedly, and up to now, no satisfactory way to predict moonlighting activities has been found. Among the well-characterized moonlighting proteins in yeasts, enzymes from the glycolytic pathway appear to be prominent. For some cases, it is shown that despite close phylogenetic relationships, moonlighting activities are not necessarily conserved among yeast species. Organisms may utilize moonlighting to add a new layer of regulation to conventional regulatory networks. The existence of this type of proteins in yeasts should be taken into account when designing mutant screens or in attempts to model or modify yeast metabolism.

1991 ◽  
Vol 11 (1) ◽  
pp. 558-563
Author(s):  
J J Loros ◽  
J C Dunlap

Although an extensive number of biological processes are under the daily control of the circadian biological clock, little is known about how the clock maintains its regulatory networks within a cell. An important aspect of this temporal control is the daily control of gene expression. Previously we identified two morning-specific genes that are regulated by the clock through daily control of gene expression (J. Loros, S. Denome, and J.C. Dunlap, Science 243:385-388, 1989). We have now introduced a method for transcriptional analysis in Neurospora crassa and used this nuclear run-on procedure to show that regulation of mRNA abundance for these two morning-specific genes occurs at the level of transcription. This transcriptional regulation by the circadian clock provides a basis for isolating circadian rhythm mutants.


1991 ◽  
Vol 11 (1) ◽  
pp. 558-563 ◽  
Author(s):  
J J Loros ◽  
J C Dunlap

Although an extensive number of biological processes are under the daily control of the circadian biological clock, little is known about how the clock maintains its regulatory networks within a cell. An important aspect of this temporal control is the daily control of gene expression. Previously we identified two morning-specific genes that are regulated by the clock through daily control of gene expression (J. Loros, S. Denome, and J.C. Dunlap, Science 243:385-388, 1989). We have now introduced a method for transcriptional analysis in Neurospora crassa and used this nuclear run-on procedure to show that regulation of mRNA abundance for these two morning-specific genes occurs at the level of transcription. This transcriptional regulation by the circadian clock provides a basis for isolating circadian rhythm mutants.


2019 ◽  
Author(s):  
Elham Ahmadzadeh ◽  
N. Sumru Bayin ◽  
Xinli Qu ◽  
Aditi Singh ◽  
Linda Madisen ◽  
...  

AbstractThanks to many advances in genetic manipulation, mouse models have become very powerful in their ability to interrogate biological processes. In order to precisely target expression of a gene of interest to particular cell types, intersectional genetic approaches utilizing two promoter/enhancers unique to a cell type are ideal. Within these methodologies, variants that add temporal control of gene expression are the most powerful. We describe the development, validation and application of an intersectional approach that involves three transgenes, requiring the intersection of two promoter/enhancers to target gene expression to precise cell types. Furthermore, the approach utilizes available lines expressing tTA/rTA to control timing of gene expression based on whether doxycycline is absent or present, respectively. We also show that the approach can be extended to other animal models, using chicken embryos. We generated three mouse lines targeted at the Tigre (Igs7) locus with TRE-loxP-tdTomato-loxP upstream of three genes (p21, DTA and Ctgf) and combined them with Cre and tTA/rtTA lines that target expression to the cerebellum and limbs. Our tools will facilitate unraveling biological questions in multiple fields and organisms.Summary statementAhmadzadeh et al. present a collection of four mouse lines and genetic tools for misexpression-mediated manipulation of cellular activity with high spatiotemporal control, in a reversible manner.


2013 ◽  
pp. 860-883
Author(s):  
Robert Penchovsky

Systems and synthetic biology promise to develop new approaches for analysis and design of complex gene expression regulatory networks in living cells with many practical applications to the pharmaceutical and biotech industries. In this chapter the development of novel universal strategies for exogenous control of gene expression is discussed. They are based on designer allosteric ribozymes that can function in the cell. The synthetic riboswitches are obtained by a patented computational procedure that provides fast and accurate modular designs with various Boolean logic functions. The riboswitches can be designed to sense in the cell either the presence or the absence of disease indicative RNA(s) or small molecules, and to switch on or off the gene expression of any exogenous protein. In addition, the riboswitches can be engineered to induce RNA interference or microRNA pathways that can conditionally down regulate the expression of key proteins in the cell. That can prevent a disease’s development. Therefore, the presented synthetic riboswitches can be used as truly universal cellular biosensors. Nowadays, disease indicative RNA(s) can be precisely identified by employing next-generation sequencing technologies with high accuracy . The methods can be employed not only for exogenous control of gene expression but also for re-programming the cell fate, anticancer, and antiviral gene therapies. Such approaches may be employed as potent molecular medicines of the future.


2016 ◽  
Author(s):  
Alexandra M. Westbrook ◽  
Julius B. Lucks

ABSTRACTRNA transcriptional regulators are emerging as versatile components for genetic circuit construction. However, RNA transcriptional regulators suffer from incomplete repression, making their dynamic range less than that of their protein counterparts. This incomplete repression can cause expression leak, which impedes the construction of larger RNA synthetic regulatory networks. Here we demonstrate how naturally derived antisense RNA-mediated transcriptional regulators can be configured to regulate both transcription and translation in a single compact RNA mechanism that functions in Escherichia coli. Using in vivo gene expression assays, we show that a combination of transcriptional termination and RBS sequestration increases repression from 85% to 98% and activation from 10 fold to over 900 fold in response to cognate antisense RNAs. We also show that orthogonal versions of this mechanism can be created through engineering minimal antisense RNAs. Finally, to demonstrate the utility of this dual control mechanism, we use it to reduce circuit leak in an RNA-only transcriptional cascade that activates gene expression as a function of a small molecule input. We anticipate these regulators will find broad use as synthetic biology moves beyond parts engineering to the design and construction of larger and more sophisticated circuits.


2003 ◽  
Vol 42 (02) ◽  
pp. 177-184 ◽  
Author(s):  
N. Julen ◽  
J.-P. Sinteff ◽  
P. Siregar

Summary Objective: In this paper we outline how Computational Integrative Physiology (CIP) can help unravel the mechanisms of normal and pathological biological processes. Our objective is to illustrate how CIP is firmly grounded on the life and computational sciences. Method: After describing a general theoretical framework for CIP, we will center our discussion on cardiac rhythmic disorders with a particular focus on the Long QT syndrome that will serve as a case example. Within this context, we will describe multi-scale processes in biological, medical and in general mathematical terms, starting from the control of gene expression to the electrical activity of the entire heart. We will therefore proceed from the smaller microscopic scales to the larger macroscopic ones. In doing so, we will illustrate, at least in a qualitative sense, how CIP can be accomplished by showing some of the relations that can exist between mathematical variables characterizing models of different space-scales. Conclusion: We will conclude by putting forth how CIP and the related fields of bioinformatics and medical informatics are necessary to derive meaningful knowledge from the huge and exponentially growing biological and medical data.


2020 ◽  
Vol 61 (10) ◽  
pp. 1818-1827
Author(s):  
Kuan-Chieh Tseng ◽  
Guan-Zhen Li ◽  
Yu-Cheng Hung ◽  
Chi-Nga Chow ◽  
Nai-Yun Wu ◽  
...  

Abstract Co-expressed genes tend to have regulatory relationships and participate in similar biological processes. Construction of gene correlation networks from microarray or RNA-seq expression data has been widely applied to study transcriptional regulatory mechanisms and metabolic pathways under specific conditions. Furthermore, since transcription factors (TFs) are critical regulators of gene expression, it is worth investigating TFs on the promoters of co-expressed genes. Although co-expressed genes and their related metabolic pathways can be easily identified from previous resources, such as EXPath and EXPath Tool, this information is not simultaneously available to identify their regulatory TFs. EXPath 2.0 is an updated database for the investigation of regulatory mechanisms in various plant metabolic pathways with 1,881 microarray and 978 RNA-seq samples. There are six significant improvements in EXPath 2.0: (i) the number of species has been extended from three to six to include Arabidopsis, rice, maize, Medicago, soybean and tomato; (ii) gene expression at various developmental stages have been added; (iii) construction of correlation networks according to a group of genes is available; (iv) hierarchical figures of the enriched Gene Ontology (GO) terms are accessible; (v) promoter analysis of genes in a metabolic pathway or correlation network is provided; and (vi) user’s gene expression data can be uploaded and analyzed. Thus, EXPath 2.0 is an updated platform for investigating gene expression profiles and metabolic pathways under specific conditions. It facilitates users to access the regulatory mechanisms of plant biological processes. The new version is available at http://EXPath.itps.ncku.edu.tw.


2018 ◽  
Author(s):  
Brian S. Clark ◽  
Genevieve L. Stein-O’Brien ◽  
Fion Shiau ◽  
Gabrielle H. Cannon ◽  
Emily Davis ◽  
...  

SUMMARYPrecise temporal control of gene expression in neuronal progenitors is necessary for correct regulation of neurogenesis and cell fate specification. However, the extensive cellular heterogeneity of the developing CNS has posed a major obstacle to identifying the gene regulatory networks that control these processes. To address this, we used single cell RNA-sequencing to profile ten developmental stages encompassing the full course of retinal neurogenesis. This allowed us to comprehensively characterize changes in gene expression that occur during initiation of neurogenesis, changes in developmental competence, and specification and differentiation of each of the major retinal cell types. These data identify transitions in gene expression between early and late-stage retinal progenitors, as well as a classification of neurogenic progenitors. We identify here the NFI family of transcription factors (Nfia, Nfib, and Nfix) as genes with enriched expression within late RPCs, and show they are regulators of bipolar interneuron and Müller glia specification and the control of proliferative quiescence.


Sign in / Sign up

Export Citation Format

Share Document