scholarly journals The ABC-Type Efflux Pump MacAB Is Involved in Protection of Serratia marcescens against Aminoglycoside Antibiotics, Polymyxins, and Oxidative Stress

mSphere ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Tatiana V. Shirshikova ◽  
Cecilia G. Sierra-Bakhshi ◽  
Leisan K. Kamaletdinova ◽  
Lilia E. Matrosova ◽  
Nailya N. Khabipova ◽  
...  

ABSTRACT Serratia marcescens is an emerging pathogen with increasing clinical importance due to its intrinsic resistance to several classes of antibiotics. The chromosomally encoded drug efflux pumps contribute to antibiotic resistance and represent a major challenge for the treatment of bacterial infections. The ABC-type efflux pump MacAB was previously linked to macrolide resistance in Escherichia coli and Salmonella enterica serovar Typhimurium. The role of the MacAB homolog in antibiotic resistance of S. marcescens is currently unknown. We found that an S. marcescens mutant lacking the MacAB pump did not show increased sensitivity to the macrolide antibiotic erythromycin but was significantly more sensitive to aminoglycoside antibiotics and polymyxins. We also showed that, in addition to its role in drug efflux, the MacAB efflux pump is required for swimming motility and biofilm formation. We propose that the motility defect of the ΔmacAB mutant is due, at least in part, to the loss of functional flagella on the bacterial surface. Furthermore, we found that the promoter of the MacAB efflux pump was active during the initial hours of growth in laboratory medium and that its activity was further elevated in the presence of hydrogen peroxide. Finally, we demonstrate a complete loss of ΔmacAB mutant viability in the presence of peroxide, which is fully restored by complementation. Thus, the S. marcescens MacAB efflux pump is essential for survival during oxidative stress and is involved in protection from polymyxins and aminoglycoside antibiotics. IMPORTANCE The opportunistic pathogen Serratia marcescens can cause urinary tract infections, respiratory infections, meningitis, and sepsis in immunocompromised individuals. These infections are challenging to treat due to the intrinsic resistance of S. marcescens to an extensive array of antibiotics. Efflux pumps play a crucial role in protection of bacteria from antimicrobials. The MacAB efflux pump, previously linked to efflux of macrolides in Escherichia coli and protection from oxidative stress in Salmonella enterica serovar Typhimurium, is not characterized in S. marcescens. We show the role of the MacAB efflux pump in S. marcescens protection from aminoglycoside antibiotics and polymyxins, modulation of bacterial motility, and biofilm formation, and we illustrate the essential role for this pump in bacterial survival during oxidative stress. Our findings make the MacAB efflux pump an attractive target for inhibition to gain control over S. marcescens infections.

2015 ◽  
Vol 59 (8) ◽  
pp. 4817-4825 ◽  
Author(s):  
Xinlong He ◽  
Feng Lu ◽  
Fenglai Yuan ◽  
Donglin Jiang ◽  
Peng Zhao ◽  
...  

ABSTRACTChronic wound infections are associated with biofilm formation, which in turn has been correlated with drug resistance. However, the mechanism by which bacteria form biofilms in clinical environments is not clearly understood. This study was designed to investigate the biofilm formation potency ofAcinetobacter baumanniiand the potential association of biofilm formation with genes encoding efflux pumps, quorum-sensing regulators, and outer membrane proteins. A total of 48 clinically isolatedA. baumanniistrains, identified by enterobacterial repetitive intergenic consensus (ERIC)-PCR as types A-II, A-III, and A-IV, were analyzed. Three representative strains, which were designatedA. baumanniiABR2, ABR11, and ABS17, were used to evaluate antimicrobial susceptibility, biofilm inducibility, and gene transcription (abaI,adeB,adeG,adeJ,carO, andompA). A significant increase in the MICs of different classes of antibiotics was observed in the biofilm cells. The formation of a biofilm was significantly induced in all the representative strains exposed to levofloxacin. The levels of gene transcription varied between bacterial genotypes, antibiotics, and antibiotic concentrations. The upregulation ofadeGcorrelated with biofilm induction. The consistent upregulation ofadeGandabaIwas detected in A-III-typeA. baumanniiin response to levofloxacin and meropenem (1/8 to 1/2× the MIC), conditions which resulted in the greatest extent of biofilm induction. This study demonstrates a potential role of the AdeFGH efflux pump in the synthesis and transport of autoinducer molecules during biofilm formation, suggesting a link between low-dose antimicrobial therapy and a high risk of biofilm infections caused byA. baumannii. This study provides useful information for the development of antibiofilm strategies.


2018 ◽  
Vol 200 (8) ◽  
Author(s):  
Maha Alqahtani ◽  
Zhuo Ma ◽  
Harshada Ketkar ◽  
Ragavan Varadharajan Suresh ◽  
Meenakshi Malik ◽  
...  

ABSTRACT Francisella tularensis , the causative agent of tularemia, lacks typical bacterial virulence factors and toxins but still exhibits extreme virulence. The bacterial multidrug efflux systems consist of an inner membrane, a transmembrane membrane fusion protein, and an outer membrane (OM) component that form a contiguous channel for the secretion of a multitude of bacterial products. Francisella contains three orthologs of the OM proteins; two of these, termed TolC and FtlC, are important for tularemia pathogenesis. The third OM protein, SilC, is homologous to the silver cation efflux protein of other bacterial pathogens. The silC gene ( FTL_0686 ) is located on an operon encoding an Emr-type multidrug efflux pump of F. tularensis . The role of SilC in tularemia pathogenesis is not known. In this study, we investigated the role of SilC in secretion and virulence of F. tularensis by generating a silC gene deletion (Δ silC ) mutant and its transcomplemented strain. Our results demonstrate that the Δ silC mutant exhibits increased sensitivity to antibiotics, oxidants, silver, diminished intramacrophage growth, and attenuated virulence in mice compared to wild-type F. tularensis . However, the secretion of antioxidant enzymes of F. tularensis is not impaired in the Δ silC mutant. The virulence of the Δ silC mutant is restored in NADPH oxidase-deficient mice, indicating that SilC resists oxidative stress in vivo . Collectively, this study demonstrates that the OM component SilC serves a specialized role in virulence of F. tularensis by conferring resistance against oxidative stress and silver. IMPORTANCE Francisella tularensis , the causative agent of a fatal human disease known as tularemia, is a category A select agent and a potential bioterror agent. The virulence mechanisms of Francisella are not completely understood. This study investigated the role of a unique outer membrane protein, SilC, of a multidrug efflux pump in the virulence of F. tularensis . This is the first report demonstrating that the OM component SilC plays an important role in efflux of silver and contributes to the virulence of F. tularensis primarily by providing resistance against oxidative stress. Characterization of these unique virulence mechanisms will provide an understanding of the pathogenesis of tularemia and identification of potential targets for the development of effective therapeutics and prophylactics for protection from this lethal disease.


Author(s):  
Nisha Mahey ◽  
Rushikesh Tambat ◽  
Nishtha Chandal ◽  
Dipesh Kumar Verma ◽  
Krishan Gopal Thakur ◽  
...  

Staphylococcus aureus is a frequent pathogen bacterium and the predominant cause of worsened nosocomial infections. Efflux pumps contribute to drug efflux and are reportedly associated with biofilm formation, thereby promoting difficult-to-treat biofilm-associated S. aureus infections.


mBio ◽  
2013 ◽  
Vol 4 (6) ◽  
Author(s):  
Lydia M. Bogomolnaya ◽  
Katharine D. Andrews ◽  
Marissa Talamantes ◽  
Aimee Maple ◽  
Yury Ragoza ◽  
...  

ABSTRACTMultidrug efflux pumps are integral membrane proteins known to actively excrete antibiotics. The macrolide-specific pump MacAB, the only ABC-type drug efflux pump inSalmonella, has previously been linked to virulence in mice. The molecular mechanism of this link betweenmacABand infection is unclear. We demonstrate thatmacABplays a role in the detoxification of reactive oxygen species (ROS), compounds that salmonellae are exposed to at various stages of infection.macABis induced upon exposure to H2O2and is critical for survival ofSalmonella entericaserovar Typhimurium in the presence of peroxide. Furthermore, we determined thatmacABis required for intracellular replication inside J774.A1 murine macrophages but is not required for survival in ROS-deficient J774.D9 macrophages.macABmutants also had reduced survival in the intestine in the mouse colitis model, a model characterized by a strong neutrophilic intestinal infiltrate where bacteria may experience the cytotoxic actions of ROS. Using an Amplex red-coupled assay,macABmutants appear to be unable to induce protection against exogenous H2O2in vitro, in contrast to the isogenic wild type. In mixed cultures, the presence of the wild-type organism, or media preconditioned by the growth of the wild-type organism, was sufficient to rescue themacABmutant from peroxide-mediated killing. Our data indicate that the MacAB drug efflux pump has functions beyond resistance to antibiotics and plays a role in the protection ofSalmonellaagainst oxidative stress. Intriguingly, our data also suggest the presence of a soluble anti-H2O2compound secreted bySalmonellacells through a MacAB-dependent mechanism.IMPORTANCEThe ABC-type multidrug efflux pump MacAB is known to be required forSalmonella entericaserovar Typhimurium virulence after oral infection in mice, yet the function of this pump during infection is unknown. We show that this pump is necessary for colonization of niches in infected mice where salmonellae encounter oxidative stress during infection. MacAB is required for growth in cultured macrophages that produce reactive oxygen species (ROS) but is not needed in macrophages that do not generate ROS. In addition, we show that MacAB is required to resist peroxide-mediated killingin vitroand for the inactivation of peroxide in the media. Finally, wild-type organisms, or supernatant from wild-type organisms grown in the presence of peroxide, rescue the growth defect ofmacABmutants in H2O2. MacAB appears to participate in the excretion of a compound that induces protection against ROS-mediated killing, revealing a new role for this multidrug efflux pump.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 823
Author(s):  
Cristiana Mateus ◽  
Ana Rita Nunes ◽  
Mónica Oleastro ◽  
Fernanda Domingues ◽  
Susana Ferreira

Aliarcobacter butzleri is an emergent enteropathogen that can be found in a range of environments. This bacterium presents a vast repertoire of efflux pumps, such as the ones belonging to the resistance nodulation cell division family, which may be associated with bacterial resistance, as well as virulence. Thus, this work aimed to evaluate the contribution of three RND efflux systems, AreABC, AreDEF and AreGHI, in the resistance and virulence of A. butzleri. Mutant strains were constructed by inactivation of the gene that encodes the inner membrane protein of these systems. The bacterial resistance profile of parental and mutant strains to several antimicrobials was assessed, as was the intracellular accumulation of the ethidium bromide dye. Regarding bacterial virulence, the role of these three efflux pumps on growth, strain fitness, motility, biofilm formation ability, survival in adverse conditions (oxidative stress and bile salts) and human serum and in vitro adhesion and invasion to Caco-2 cells was evaluated. We observed that the mutants from the three efflux pumps were more susceptible to several classes of antimicrobials than the parental strain and presented an increase in the accumulation of ethidium bromide, indicating a potential role of the efflux pumps in the extrusion of antimicrobials. The mutant strains had no bacterial growth defects; nonetheless, they presented a reduction in relative fitness. For the three mutants, an increase in the susceptibility to oxidative stress was observed, while only the mutant for AreGHI efflux pump showed a relevant role in bile stress survival. All the mutant strains showed an impairment in biofilm formation ability, were more susceptible to human serum and were less adherent to intestinal epithelial cells. Overall, the results support the contribution of the efflux pumps AreABC, AreDEF and AreGHI of A. butzleri to antimicrobial resistance, as well as to bacterial virulence.


2015 ◽  
Vol 59 (11) ◽  
pp. 6873-6881 ◽  
Author(s):  
Kathryn Winglee ◽  
Shichun Lun ◽  
Marco Pieroni ◽  
Alan Kozikowski ◽  
William Bishai

ABSTRACTDrug resistance is a major problem inMycobacterium tuberculosiscontrol, and it is critical to identify novel drug targets and new antimycobacterial compounds. We have previously identified an imidazo[1,2-a]pyridine-4-carbonitrile-based agent, MP-III-71, with strong activity againstM. tuberculosis. In this study, we evaluated mechanisms of resistance to MP-III-71. We derived three independentM. tuberculosismutants resistant to MP-III-71 and conducted whole-genome sequencing of these mutants. Loss-of-function mutations inRv2887were common to all three MP-III-71-resistant mutants, and we confirmed the role ofRv2887as a gene required for MP-III-71 susceptibility using complementation. The Rv2887 protein was previously unannotated, but domain and homology analyses suggested it to be a transcriptional regulator in the MarR (multiple antibiotic resistance repressor) family, a group of proteins first identified inEscherichia colito negatively regulate efflux pumps and other mechanisms of multidrug resistance. We found that two efflux pump inhibitors, verapamil and chlorpromazine, potentiate the action of MP-III-71 and that mutation ofRv2887abrogates their activity. We also used transcriptome sequencing (RNA-seq) to identify genes which are differentially expressed in the presence and absence of a functional Rv2887 protein. We found that genes involved in benzoquinone and menaquinone biosynthesis were repressed by functional Rv2887. Thus, inactivating mutations ofRv2887, encoding a putative MarR-like transcriptional regulator, confer resistance to MP-III-71, an effective antimycobacterial compound that shows no cross-resistance to existing antituberculosis drugs. The mechanism of resistance ofM. tuberculosisRv2887mutants may involve efflux pump upregulation and also drug methylation.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Robert W. McKee ◽  
Carissa K. Harvest ◽  
Rita Tamayo

ABSTRACTThe intracellular signaling molecule cyclic diguanylate (c-di-GMP) regulates many processes in bacteria, with a central role in controlling the switch between motile and nonmotile lifestyles. Recent work has shown that inClostridium difficile(also calledClostridioides difficile), c-di-GMP regulates swimming and surface motility, biofilm formation, toxin production, and intestinal colonization. In this study, we determined the transcriptional regulon of c-di-GMP inC. difficile,employing overexpression of a diguanylate cyclase gene to artificially manipulate intracellular c-di-GMP. Consistent with prior work, c-di-GMP regulated the expression of genes involved in swimming and surface motility. c-di-GMP also affected the expression of multiple genes encoding cell envelope proteins, several of which affected biofilm formationin vitro. A substantial proportion of the c-di-GMP regulon appears to be controlled either directly or indirectly via riboswitches. We confirmed the functionality of 11 c-di-GMP riboswitches, demonstrating their effects on downstream gene expression independent of the upstream promoters. The class I riboswitches uniformly functioned as “off” switches in response to c-di-GMP, while class II riboswitches acted as “on” switches. Transcriptional analyses of genes 3′ of c-di-GMP riboswitches over a broad range of c-di-GMP levels showed that relatively modest changes in c-di-GMP levels are capable of altering gene transcription, with concomitant effects on microbial behavior. This work expands the known c-di-GMP signaling network inC. difficileand emphasizes the role of the riboswitches in controlling known and putative virulence factors inC. difficile.IMPORTANCEInClostridium difficile, the signaling molecule c-di-GMP regulates multiple processes affecting its ability to cause disease, including swimming and surface motility, biofilm formation, toxin production, and intestinal colonization. In this study, we used RNA-seq to define the transcriptional regulon of c-di-GMP inC. difficile. Many new targets of c-di-GMP regulation were identified, including multiple putative colonization factors. Transcriptional analyses revealed a prominent role for riboswitches in c-di-GMP signaling. Only a subset of the 16 previously predicted c-di-GMP riboswitches were functionalin vivoand displayed potential variability in their response kinetics to c-di-GMP. This work underscores the importance of studying c-di-GMP riboswitches in a relevant biological context and highlights the role of the riboswitches in controlling gene expression inC. difficile.


2015 ◽  
Vol 198 (3) ◽  
pp. 521-535 ◽  
Author(s):  
Simon Schäper ◽  
Elizaveta Krol ◽  
Dorota Skotnicka ◽  
Volkhard Kaever ◽  
Rolf Hilker ◽  
...  

ABSTRACTSinorhizobium melilotiundergoes major lifestyle changes between planktonic states, biofilm formation, and symbiosis with leguminous plant hosts. In many bacteria, the second messenger 3′,5′-cyclic di-GMP (c-di-GMP, or cdG) promotes a sessile lifestyle by regulating a plethora of processes involved in biofilm formation, including motility and biosynthesis of exopolysaccharides (EPS). Here, we systematically investigated the role of cdG inS. melilotiRm2011 encoding 22 proteins putatively associated with cdG synthesis, degradation, or binding. Single mutations in 21 of these genes did not cause evident changes in biofilm formation, motility, or EPS biosynthesis. In contrast, manipulation of cdG levels by overproducing endogenous or heterologous diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) affected these processes and accumulation ofN-Acyl-homoserine lactones in the culture supernatant. Specifically, individual overexpression of theS. melilotigenespleD,SMb20523,SMb20447,SMc01464, andSMc03178encoding putative DGCs and ofSMb21517encoding a single-domain PDE protein had an impact and resulted in increased levels of cdG. Compared to the wild type, anS. melilotistrain that did not produce detectable levels of cdG (cdG0) was more sensitive to acid stress. However, it was symbiotically potent, unaffected in motility, and only slightly reduced in biofilm formation. TheSMc01790-SMc01796locus, homologous to theAgrobacterium tumefaciensuppABCDEFcluster governing biosynthesis of a unipolarly localized polysaccharide, was found to be required for cdG-stimulated biofilm formation, while the single-domain PilZ protein McrA was identified as a cdG receptor protein involved in regulation of motility.IMPORTANCEWe present the first systematic genome-wide investigation of the role of 3′,5′-cyclic di-GMP (c-di-GMP, or cdG) in regulation of motility, biosynthesis of exopolysaccharides, biofilm formation, quorum sensing, and symbiosis in a symbiotic alpha-rhizobial species. Phenotypes of anS. melilotistrain unable to produce cdG (cdG0) demonstrated that this second messenger is not essential for root nodule symbiosis but may contribute to acid tolerance. Our data further suggest that enhanced levels of cdG promote sessility ofS. melilotiand uncovered a single-domain PilZ protein as regulator of motility.


Sign in / Sign up

Export Citation Format

Share Document