scholarly journals A Module Located at a Chromosomal Integration Hot Spot Is Responsible for the Multidrug Resistance of a Reference Strain from Escherichia coli Clonal Group A

2009 ◽  
Vol 53 (6) ◽  
pp. 2283-2288 ◽  
Author(s):  
Mathilde Lescat ◽  
Alexandra Calteau ◽  
Claire Hoede ◽  
Valérie Barbe ◽  
Marie Touchon ◽  
...  

ABSTRACT Escherichia coli clonal group A (CGA) commonly exhibits a distinctive multidrug antimicrobial resistance phenotype—i.e., resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, tetracycline, and trimethoprim (ACSSuTTp)—and has accounted for up to 50% of trimethoprim-sulfamethoxazole-resistant E. coli urinary tract infections in some locales. Annotation of the whole-genome sequencing of UMN026, a reference CGA strain, clarified the genetic basis for this strain's ACSSuTTp antimicrobial resistance phenotype. Most of the responsible genes were clustered in a unique 23-kbp chromosomal region, designated the genomic resistance module (GRM), which occurred within a 105-kbp genomic island situated at the leuX tRNA. The GRM is characterized by numerous remnants of mobilization and rearrangement events suggesting multiple horizontal transfers. Additionally, comparative genomic analysis of the leuX tRNA genomic island in 14 sequenced E. coli genomes showed that this region is a hot spot of integration, with the presence/absence of specific subregions being uncorrelated with either the phylogenetic group or the pathotype. Our data illustrate the importance of whole-genome sequencing in the detection of genetic elements involved in antimicrobial resistance. Additionally, this is the first documentation of the bla TEM and dhfrVII genes in a chromosomal location in E. coli strains.

2020 ◽  
Vol 6 (7) ◽  
Author(s):  
Bede Constantinides ◽  
Kevin K. Chau ◽  
T. Phuong Quan ◽  
Gillian Rodger ◽  
Monique I. Andersson ◽  
...  

Escherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonized with diverse populations of E. coli , Klebsiella pneumoniae and Klebsiella oxytoca , including both antimicrobial-resistant and susceptible strains. Using whole-genome sequencing of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies, which may vary as a result of different inputs and selection pressures. Whole-genome sequencing of 46 contemporaneous patient isolates identified one (2 %; 95 % CI 0.05–11 %) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10 % of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including bla CTX-M, bla SHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention. This article contains data hosted by Microreact.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1504
Author(s):  
Frederick Adzitey ◽  
Jonathan Asante ◽  
Hezekiel M. Kumalo ◽  
Rene B. Khan ◽  
Anou M. Somboro ◽  
...  

Escherichia coli are among the most common foodborne pathogens associated with infections reported from meat sources. This study investigated the virulome, pathogenicity, stress response factors, clonal lineages, and the phylogenomic relationship of E. coli isolated from different meat sources in Ghana using whole-genome sequencing. Isolates were screened from five meat sources (beef, chevon, guinea fowl, local chicken, and mutton) and five areas (Aboabo, Central market, Nyorni, Victory cinema, and Tishegu) based in the Tamale Metropolis, Ghana. Following microbial identification, the E. coli strains were subjected to whole-genome sequencing. Comparative visualisation analyses showed different DNA synteny of the strains. The isolates consisted of diverse sequence types (STs) with the most common being ST155 (n = 3/14). Based Upon Related Sequence Types (eBURST) analyses of the study sequence types identified four similar clones, five single-locus variants, and two satellite clones (more distantly) with global curated E. coli STs. All the isolates possessed at least one restriction-modification (R-M) and CRISPR defence system. Further analysis revealed conserved stress response mechanisms (detoxification, osmotic, oxidative, and periplasmic stress) in the strains. Estimation of pathogenicity predicted a higher average probability score (Pscore ≈ 0.937), supporting their pathogenic potential to humans. Diverse virulence genes that were clonal-specific were identified. Phylogenomic tree analyses coupled with metadata insights depicted the high genetic diversity of the E. coli isolates with no correlation with their meat sources and areas. The findings of this bioinformatic analyses further our understanding of E. coli in meat sources and are broadly relevant to the design of contamination control strategies in meat retail settings in Ghana.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244358
Author(s):  
Rafika Indah Paramita ◽  
Erni Juwita Nelwan ◽  
Fadilah Fadilah ◽  
Editha Renesteen ◽  
Nelly Puspandari ◽  
...  

Escherichia coli are one of the commonest bacteria causing bloodstream infection (BSI). The aim of the research was to identify the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance of E. coli isolated from bloodstream infection hospitalized patients in Cipto Mangunkusumo National Hospital Jakarta. We used whole genome sequencing methods rather than the conventional one, to characterized the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance (AMR) of E. coli. The composition of E. coli sequence types (ST) was as follows: ST131 (n = 5), ST38 (n = 3), ST405 (n = 3), ST69 (n = 3), and other STs (ST1057, ST127, ST167, ST3033, ST349, ST40, ST58, ST6630). Enteroaggregative E. coli (EAEC) and Extra-intestinal pathogenic E. coli (ExPEC) groups were found dominant in our samples. Twenty isolates carried virulence genes for host cells adherence and 15 for genes that encourage E. coli immune evasion by enhancing survival in serum. ESBL-genes were present in 17 E. coli isolates. Other AMR genes also encoded resistance against aminoglycosides, quinolones, chloramphenicol, macrolides and trimethoprim. The phylogeny analysis showed that phylogroup D is dominated and followed by phylogroup B2. The E. coli isolated from 22 patients in Cipto Mangunkusumo National Hospital Jakarta showed high diversity in serotypes, sequence types, virulence genes, and AMR genes. Based on this finding, routinely screening all bacterial isolates in health care facilities can improve clinical significance. By using Whole Genome Sequencing for laboratory-based surveillance can be a valuable early warning system for emerging pathogens and resistance mechanisms.


2017 ◽  
Vol 22 (16) ◽  
Author(s):  
Marta Corbella ◽  
Bianca Mariani ◽  
Carolina Ferrari ◽  
Francesco Comandatore ◽  
Erika Scaltriti ◽  
...  

We describe three cases of bloodstream infection caused by colistin-resistant Escherichia coli in patients in a tertiary hospital in Italy, between August 2016 and January 2017. Whole genome sequencing detected the mcr-1 gene in three isolated strains belonging to different sequence types (STs). This occurrence of three cases with mcr-1-positive E. coli belonging to different STs in six months suggests a widespread problem in settings where high multidrug resistance is endemic such as in Italy.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Max Laurence Cummins ◽  
Piklu Roy Chowdhury ◽  
Marc Serge Marenda ◽  
Glenn Francis Browning ◽  
Steven Philip Djordjevic

ABSTRACT Salmonella genomic island 1 (SGI1) is an integrative genetic island first described in Salmonella enterica serovars Typhimurium DT104 and Agona in 2000. Variants of it have since been described in multiple serovars of S. enterica, as well as in Proteus mirabilis, Acinetobacter baumannii, Morganella morganii, and several other genera. The island typically confers resistance to older, first-generation antimicrobials; however, some variants carry blaNDM-1, blaVEB-6, and blaCTX-M15 genes that encode resistance to frontline, clinically important antibiotics, including third-generation cephalosporins. Genome sequencing studies of avian pathogenic Escherichia coli (APEC) identified a sequence type 117 (ST117) isolate (AVC96) with genetic features found in SGI1. The complete genome sequence of AVC96 was assembled from a combination of Illumina and single-molecule real-time (SMRT) sequence data. Analysis of the AVC96 chromosome identified a variant of SGI1-B located 18 bp from the 3′ end of trmE, also known as the attB site, a known hot spot for the integration of genomic islands. This is the first report of SGI1 in wild-type E. coli. The variant, here named SGI1-B-Ec1, was otherwise unremarkable, apart from the identification of ISEc43 in open reading frame (ORF) S023. IMPORTANCE SGI1 and variants of it carry a variety of antimicrobial resistance genes, including those conferring resistance to extended-spectrum β-lactams and carbapenems, and have been found in diverse S. enterica serovars, Acinetobacter baumannii, and other members of the Enterobacteriaceae. SGI1 integrates into Gram-negative pathogenic bacteria by targeting a conserved site 18 bp from the 3′ end of trmE. For the first time, we describe a novel variant of SGI1 in an avian pathogenic Escherichia coli isolate. The presence of SGI1 in E. coli is significant because it represents yet another lateral gene transfer mechanism to enhancing the capacity of E. coli to acquire and propagate antimicrobial resistance and putative virulence genes. This finding underscores the importance of whole-genome sequencing (WGS) to microbial genomic epidemiology, particularly within a One Health context. Further studies are needed to determine how widespread SGI1 and variants of it may be in Australia.


2017 ◽  
Vol 56 (1) ◽  
Author(s):  
Aaron E. Lucas ◽  
Ryota Ito ◽  
Mustapha M. Mustapha ◽  
Christi L. McElheny ◽  
Roberta T. Mettus ◽  
...  

ABSTRACTFosfomycin maintains activity against mostEscherichia coliclinical isolates, but the growth ofE. colicolonies within the zone of inhibition around the fosfomycin disk is occasionally observed upon susceptibility testing. We aimed to estimate the frequency of such nonsusceptible inner colony mutants and identify the underlying resistance mechanisms. Disk diffusion testing of fosfomycin was performed on 649 multidrug-resistantE. coliclinical isolates collected between 2011 and 2015. For those producing inner colonies inside the susceptible range, the parental strains and their representative inner colony mutants were subjected to MIC testing, whole-genome sequencing, reverse transcription-quantitative PCR (qRT-PCR), and carbohydrate utilization studies. Of the 649E. coliclinical isolates, 5 (0.8%) consistently produced nonsusceptible inner colonies. Whole-genome sequencing revealed the deletion ofuhpTencoding hexose-6-phosphate antiporter in 4 of theE. coliinner colony mutants, while the remaining mutant contained a nonsense mutation inuhpA. The expression ofuhpTwas absent in the mutant strains withuhpTdeletion and was not inducible in the strain with theuhpAmutation, unlike in its parental strain. All 5 inner colony mutants had reduced growth on minimal medium supplemented with glucose-6-phosphate. In conclusion, fosfomycin-nonsusceptible inner colony mutants can occur due to the loss of function or induction of UhpT but are rare among multidrug-resistantE. coliclinical strains. Considering that these mutants carry high biological costs, we suggest that fosfomycin susceptibility of strains that generate inner colony mutants can be interpreted on the basis of the zone of inhibition without accounting for the inner colonies.


2015 ◽  
Vol 53 (11) ◽  
pp. 3530-3538 ◽  
Author(s):  
Mithila Ferdous ◽  
Kai Zhou ◽  
Alexander Mellmann ◽  
Stefano Morabito ◽  
Peter D. Croughs ◽  
...  

The ability ofEscherichia coliO157:H7 to induce cellular damage leading to disease in humans is related to numerous virulence factors, most notably thestxgene, encoding Shiga toxin (Stx) and carried by a bacteriophage. Loss of the Stx-encoding bacteriophage may occur during infection or culturing of the strain. Here, we collectedstx-positive andstx-negative variants ofE. coliO157:H7/NM (nonmotile) isolates from patients with gastrointestinal complaints. Isolates were characterized by whole-genome sequencing (WGS), and their virulence properties and phylogenetic relationship were determined. Because of the presence of theeaegene but lack of thebfpAgene, thestx-negative isolates were considered atypical enteropathogenicE. coli(aEPEC). However, they had phenotypic characteristics similar to those of the Shiga toxin-producingE. coli(STEC) isolates and belonged to the same sequence type, ST11. Furthermore, EPEC and STEC isolates shared similar virulence genes, the locus of enterocyte effacement region, and plasmids. Core genome phylogenetic analysis using a gene-by-gene typing approach showed that the sorbitol-fermenting (SF)stx-negative isolates clustered together with an SF STEC isolate and that one non-sorbitol-fermenting (NSF)stx-negative isolate clustered together with NSF STEC isolates. Therefore, thesestx-negative isolates were thought either to have lost the Stx phage or to be a progenitor of STEC O157:H7/NM. As detection of STEC infections is often based solely on the identification of the presence ofstxgenes, these may be misdiagnosed in routine laboratories. Therefore, an improved diagnostic approach is required to manage identification, strategies for treatment, and prevention of transmission of these potentially pathogenic strains.


2020 ◽  
Vol 89 (3) ◽  
pp. 273-282
Author(s):  
Aneta Papoušková ◽  
Alois Čížek

Infections associated with Escherichia coli are responsible for immense losses in poultry production; moreover, poultry products may serve as a source of pathogenic and/or resistant strains for humans. As early as during the first hours of life, commercially hatched chickens are colonized with potentially pathogenic E. coli from the environment of hatcheries. The source of contamination has not been quite elucidated and the possibility of vertical spread of several avian pathogenic E. coli (APEC) lineages has been suggested, making the hatcheries an important node where cross-contamination of chicken of different origin can take place. The recent technological progress makes the method of whole-genome sequencing (WGS) widely accessible, allowing high-throughput analysis of a large amount of isolates. Whole-genome sequencing offers an opportunity to trace APEC and extended-spectrum/plasmid-encoded AmpC beta-lactamases-producing E. coli (ESBL/pAmpC-E.coli) along the poultry processing chain and to recognize the potential pathways of “epidemicˮ sequence types. Data from WGS may be used in monitoring antimicrobial resistance, comparative pathogenomic studies describing new virulence traits and their role in pathogenesis and, above all, epidemiologic monitoring of clonal outbreaks and description of different transmission routes and their significance. This review attempts to outline the complexity of poultry-associated E. coli issues and the possibility to employ WGS in elucidating them.


2019 ◽  
Author(s):  
Arianna Miles-Jay ◽  
Scott J. Weissmann ◽  
Amanda L. Adler ◽  
Janet G. Baseman ◽  
Danielle M. Zerr

AbstractEscherichia coli sequence type 131 H30 has garnered global attention as a dominant antimicrobial-resistant lineage of extraintestinal pathogenic E. coli, but its transmission dynamics remain undefined. We applied whole genome sequencing to identify putative transmission clusters among clinical isolates of H30 from children across the U.S. Of 126 isolates, 17 were involved in 8 putative transmission clusters; 4 clusters involved isolates with some evidence of healthcare-associated epidemiologic linkages. Geographic clustering analyses showed weak geographic clustering. These findings are consistent with a framework where within-hospital transmission is not a main contributor to the propagation of H30 in a pediatric setting.


2019 ◽  
Vol 24 (50) ◽  
Author(s):  
Emma Stubberfield ◽  
Manal AbuOun ◽  
Ellie Sayers ◽  
Heather M O’Connor ◽  
Roderick M Card ◽  
...  

Background Surveillance of commensal Escherichia coli, a possible reservoir of antimicrobial resistance (AMR) genes, is important as they pose a risk to human and animal health. Most surveillance activities rely on phenotypic characterisation, but whole genome sequencing (WGS) presents an alternative. Aim In this retrospective study, we tested 515 E. coli isolated from pigs to evaluate the use of WGS to predict resistance phenotype. Methods Minimum inhibitory concentration (MIC) was determined for nine antimicrobials of clinical and veterinary importance. Deviation from wild-type, fully-susceptible MIC was assessed using European Committee on Antimicrobial Susceptibility Testing (EUCAST) epidemiological cut-off (ECOFF) values. Presence of AMR genes and mutations were determined using APHA SeqFinder. Statistical two-by-two table analysis and Cohen’s kappa (k) test were applied to assess genotype and phenotype concordance. Results Overall, correlation of WGS with susceptibility to the nine antimicrobials was 98.9% for test specificity, and 97.5% for the positive predictive value of a test. The overall kappa score (k = 0.914) indicated AMR gene presence was highly predictive of reduced susceptibility and showed excellent correlation with MIC. However, there was variation for each antimicrobial; five showed excellent correlation; four very good and one moderate. Suggested ECOFF adjustments increased concordance between genotypic data and kappa values for four antimicrobials. Conclusion WGS is a powerful tool for accurately predicting AMR that can be used for national surveillance purposes. Additionally, it can detect resistance genes from a wider panel of antimicrobials whose phenotypes are currently not monitored but may be of importance in the future.


Sign in / Sign up

Export Citation Format

Share Document