scholarly journals Comparative Fungal Community Analyses Using Metatranscriptomics and Internal Transcribed Spacer Amplicon Sequencing from Norway Spruce

mSystems ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Andreas N. Schneider ◽  
John Sundh ◽  
Görel Sundström ◽  
Kerstin Richau ◽  
Nicolas Delhomme ◽  
...  

ABSTRACT The health, growth, and fitness of boreal forest trees are impacted and improved by their associated microbiomes. Microbial gene expression and functional activity can be assayed with RNA sequencing (RNA-Seq) data from host samples. In contrast, phylogenetic marker gene amplicon sequencing data are used to assess taxonomic composition and community structure of the microbiome. Few studies have considered how much of this structural and taxonomic information is included in transcriptomic data from matched samples. Here, we described fungal communities using both host-derived RNA-Seq and fungal ITS1 DNA amplicon sequencing to compare the outcomes between the methods. We used a panel of root and needle samples from the coniferous tree species Picea abies (Norway spruce) growing in untreated (nutrient-deficient) and nutrient-enriched plots at the Flakaliden forest research site in boreal northern Sweden. We show that the relationship between samples and alpha and beta diversity indicated by the fungal transcriptome is in agreement with that generated by the ITS data, while also identifying a lack of taxonomic overlap due to limitations imposed by current database coverage. Furthermore, we demonstrate how metatranscriptomics data additionally provide biologically informative functional insights. At the community level, there were changes in starch and sucrose metabolism, biosynthesis of amino acids, and pentose and glucuronate interconversions, while processing of organic macromolecules, including aromatic and heterocyclic compounds, was enriched in transcripts assigned to the genus Cortinarius. IMPORTANCE A deeper understanding of microbial communities associated with plants is revealing their importance for plant health and productivity. RNA extracted from plant field samples represents the host and other organisms present. Typically, gene expression studies focus on the plant component or, in a limited number of studies, expression in one or more associated organisms. However, metatranscriptomic data are rarely used for taxonomic profiling, which is currently performed using amplicon approaches. We created an assembly-based, reproducible, and hardware-agnostic workflow to taxonomically and functionally annotate fungal RNA-Seq data obtained from Norway spruce roots, which we compared to matching ITS amplicon sequencing data. While we identified some limitations and caveats, we show that functional, taxonomic, and compositional insights can all be obtained from RNA-Seq data. These findings highlight the potential of metatranscriptomics to advance our understanding of interaction, response, and effect between host plants and their associated microbial communities.

2021 ◽  
Author(s):  
Andreas Schneider ◽  
John Sundh ◽  
Görel Sundström ◽  
Kerstin Richau ◽  
Nicolas Delhomme ◽  
...  

<p>Microbial communities are major players in carbon and nitrogen cycling globally and are of particular importance for plant communities in the nutrient poor soils of boreal forests. Especially relevant are the fungal communities in the soil that interact with the plants in multiple ways, indirectly through their pivotal role in the breakdown of organic matter and, more directly, through mycorrhizal symbiosis with plant roots. Large-scale disturbances of these complex microbial communities can lead to shifts in soil carbon storage with unknown and global-scale long-term consequences. To understand the dynamics of these communities and their relationship to associated plants in response to climate change and anthropogenic influence, we need a better understanding of how modern “omics” methods can help us to understand compositional and functional shifts of these microbiomes. Microbial gene expression and functional activity can be assayed with RNA sequencing (RNA-Seq) data from environmental samples. In contrast, currently phylogenetic marker gene amplicon sequencing data is generally used to assess taxonomic composition and community structure of the microbiome. Few studies have considered how much of this structural and taxonomic information is included in RNA-Seq transcriptomic data from matched samples. Here we describe fungal communities using both RNA-Seq and fungal ITS1 DNA amplicon sequencing to compare the outcomes between the methods. We used a panel of root and needle samples from mature stands of the coniferous tree species Picea abies (Norway spruce) growing in untreated (nutrient deficient) and nutrient enriched plots at the Flakaliden forest research site in boreal northern Sweden. We created an assembly-based, reproducible and hardware agnostic workflow to taxonomically and functionally annotate fungal RNA-Seq data obtained from Norway spruce roots, which we compared to matching ITS amplicon sequencing data.<strong> </strong>We show that the community structure indicated by the fungal transcriptome is in agreement with that generated by the ITS data, while also identifying limitations imposed by current database coverage. Furthermore, we show examples to demonstrate how metatranscriptomics data additionally provides biologically informative functional insight at the community and individual species level. These findings highlight the potential of metatranscriptomics to advance our understanding of interaction, response and effect both between host plants and their associated microbial communities, and among the members of microbial communities in environmental samples in general.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Oksana Kutsyr ◽  
Lucía Maestre-Carballa ◽  
Mónica Lluesma-Gomez ◽  
Manuel Martinez-Garcia ◽  
Nicolás Cuenca ◽  
...  

AbstractThe gut microbiome is known to influence the pathogenesis and progression of neurodegenerative diseases. However, there has been relatively little focus upon the implications of the gut microbiome in retinal diseases such as retinitis pigmentosa (RP). Here, we investigated changes in gut microbiome composition linked to RP, by assessing both retinal degeneration and gut microbiome in the rd10 mouse model of RP as compared to control C57BL/6J mice. In rd10 mice, retinal responsiveness to flashlight stimuli and visual acuity were deteriorated with respect to observed in age-matched control mice. This functional decline in dystrophic animals was accompanied by photoreceptor loss, morphologic anomalies in photoreceptor cells and retinal reactive gliosis. Furthermore, 16S rRNA gene amplicon sequencing data showed a microbial gut dysbiosis with differences in alpha and beta diversity at the genera, species and amplicon sequence variants (ASV) levels between dystrophic and control mice. Remarkably, four fairly common ASV in healthy gut microbiome belonging to Rikenella spp., Muribaculaceace spp., Prevotellaceae UCG-001 spp., and Bacilli spp. were absent in the gut microbiome of retinal disease mice, while Bacteroides caecimuris was significantly enriched in mice with RP. The results indicate that retinal degenerative changes in RP are linked to relevant gut microbiome changes. The findings suggest that microbiome shifting could be considered as potential biomarker and therapeutic target for retinal degenerative diseases.


2016 ◽  
Vol 34 (2_suppl) ◽  
pp. 8-8
Author(s):  
Himisha Beltran ◽  
Alexander Wyatt ◽  
Edmund Chedgy ◽  
Ladan Fazli ◽  
Andrea Sboner ◽  
...  

8 Background: Molecular analyses of neoadjuvant post-treatment radical prostatectomy (RP) specimens has been challenging as often times only microscopic foci remain present at time of RP precluding RNA-seq. DNA analysis alone in the absence of expression may be suboptimal in elucidating complex mechanisms of resistance and/or prognostic risk stratification. We therefore set out to develop an assay that could quantify mRNA expression in treated and untreated PCA using formalin fixed paraffin embedded (FFPE) tissues. Methods: We evaluated 40 untreated and post-treatment FFPE specimens as well as patient-matched pre-treated needle biopsies and baseline clinical data from patients enrolled on CALGB 90203: a randomized phase 3 trial comparing noeadjuvant docetaxel and ADT followed by RP vs RP alone for men with high risk localized PCA. High-density tumor areas were selected for RNA extraction (min 50ng RNA). We used NanoString nCounter to quantify gene expression of a custom panel of 75 genes including AR and androgen regulated, neural/neuroendocrine (NE), EMT, cell cycle, hormone receptors, TMPRSS-ERG, ARv7 splice variant, and housekeeper genes. mRNA data was integrated with matched whole exome sequencing data. Frozen specimens and RNA-Seq (n = 7) were used for QC and comparative analysis. Results: Quantitative expression using Nanostring showed high correlation with RNA-seq of patient-matched frozen tissue (Spearman coefficient 0.9). There was significant upregulation of AR and the ARv7 expression following treatment, as well as a subset of NE and EMT genes; three high chromogranin A outlier cases were identified in the treatment arm. There was an overall higher AR score in treated cases (based on expression of 30 AR signaling genes) compared to untreated, along the spectrum of CRPC. Conclusions: These data support the feasibility of quantifying gene expression in neoadjuvant-treated PCA cases with limited FFPE tissue requirement. Extensive characterization of AR status and NE/EMT genes identifies molecular outliers that can arise post-treatment and provides new insight into the heterogeneity of treatment response and potential early markers of resistance. Clinical trial information: NCT00430183.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e13032-e13032 ◽  
Author(s):  
Anton Buzdin ◽  
Andrew Garazha ◽  
Maxim Sorokin ◽  
Alex Glusker ◽  
Alexey Aleshin ◽  
...  

e13032 Background: Intracellular molecular pathways (IMPs) control all major events in the living cell. They are considered hotspots in contemporary oncology because knowledge of IMPs activation is essential for understanding mechanisms of molecular pathogenesis in oncology. Profiling IMPs requires RNA-seq data for tumors and for a collection of reference normal tissues. However, there is a shortage now in such profiles for normal tissues from healthy human donors, uniformly profiled in a single series of experiments. Access to the largest dataset of normal profiles GTEx is only partly available through the dbGaP. In TCGA database, norms are adjacent to surgically removed tumors and may be affected by tumor-linked growth factors, inflammation and altered vascularization. ENCODE datasets were for the autopsies of normal tissues, but they can’t form statistically significant reference groups. Methods: Tissue samples representing 20 organs were taken from post-mortal human healthy donors killed in road accidents no later than 36 hours after death, blood samples were taken from healthy volunteers. Gene expression was profiled in RNA-seq experiments using the same reagents, equipment and protocols. Bioinformatic algorithms for IMP analysis were developed and validated using experimental and public gene expression datasets. Results: From original sequencing data we constructed the biggest fully open reference expression database of normal human tissues including 465 profiles termed Oncobox Atlas of Normal Tissue Expression (ANTE, original data: GSE120795). We next developed a method termed Oncobox for interrogating activation of IMPs in human cancers. It includes modules of expression data harmonization and comparison and an algorithm for automatic annotation of molecular pathways. The Oncobox system enables accurate scoring of thousands molecular pathways using RNA-seq data. Oncobox pathway analysis is also applicable for quantitative proteomics and microRNA data in oncology. Conclusions: The Oncobox system can be used for a plethora of applications in cancer research including finding differentially regulated genes and IMPs, and for discovery of new pathway-related diagnostic and prognostic biomarkers.


2021 ◽  
Author(s):  
David Chisanga ◽  
Yang Liao ◽  
Wei Shi

Abstract Background: RNA sequencing is currently the method of choice for genome-wide profiling of gene expression. A popular approach to quantify expression levels of genes from RNA-seq data is to map reads to a reference genome and then count mapped reads to each gene. Gene annotation data, which include chromosomal coordinates of exons for tens of thousands of genes, are required for this quantification process. There are several major sources of gene annotations that can be used for quantification, such as Ensembl and RefSeq databases. However, there is very little understanding of the effect that the choice of annotation has on the accuracy of gene expression quantification in an RNA-seq analysis.Results: In this paper, we present results from our comparison of Ensembl and RefSeq human annotations on their impact on gene expression quantification using a benchmark RNA-seq dataset generated by the SEquencing Quality Control (SEQC) consortium. We show that the use of RefSeq gene annotation models led to better quantification accuracy, based on the correlation with ground truths including expression data from >800 real-time PCR validated genes, known titration ratios of gene expression and microarray expression data. We also found that the recent expansion of the RefSeq annotation has led to a decrease in its annotation accuracy. Finally, we demonstrated that the RNA-seq quantification differences observed between different annotations were not affected by the use of different normalization methods.Conclusion: In conclusion, our study found that the use of the conservative RefSeq gene annotation yields better RNA-seq quantification results than the more comprehensive Ensembl annotation. We also found that, surprisingly, the recent expansion of the RefSeq database, which was primarily driven by the incorporation of sequencing data into the gene annotation process, resulted in a reduction in the accuracy of RNA-seq quantification.


2015 ◽  
Author(s):  
Benjamin K Johnson ◽  
Matthew B Scholz ◽  
Tracy K Teal ◽  
Robert B Abramovitch

Summary: SPARTA is a reference-based bacterial RNA-seq analysis workflow application for single-end Illumina reads. SPARTA is turnkey software that simplifies the process of analyzing RNA-seq data sets, making bacterial RNA-seq analysis a routine process that can be undertaken on a personal computer or in the classroom. The easy-to-install, complete workflow processes whole transcriptome shotgun sequencing data files by trimming reads and removing adapters, mapping reads to a reference, counting gene features, calculating differential gene expression, and, importantly, checking for potential batch effects within the data set. SPARTA outputs quality analysis reports, gene feature counts and differential gene expression tables and scatterplots. The workflow is implemented in Python for file management and sequential execution of each analysis step and is available for Mac OS X, Microsoft Windows, and Linux. To promote the use of SPARTA as a teaching platform, a web-based tutorial is available explaining how RNA-seq data are processed and analyzed by the software. Availability and Implementation: Tutorial and workflow can be found at sparta.readthedocs.org. Teaching materials are located at sparta-teaching.readthedocs.org. Source code can be downloaded at www.github.com/abramovitchMSU/, implemented in Python and supported on Mac OS X, Linux, and MS Windows. Contact: Robert B. Abramovitch ([email protected]) Supplemental Information: Supplementary data are available online


2018 ◽  
Author(s):  
Koen Van Den Berge ◽  
Katharina Hembach ◽  
Charlotte Soneson ◽  
Simone Tiberi ◽  
Lieven Clement ◽  
...  

Gene expression is the fundamental level at which the result of various genetic and regulatory programs are observable. The measurement of transcriptome-wide gene expression has convincingly switched from microarrays to sequencing in a matter of years. RNA sequencing (RNA-seq) provides a quantitative and open system for profiling transcriptional outcomes on a large scale and therefore facilitates a large diversity of applications, including basic science studies, but also agricultural or clinical situations. In the past 10 years or so, much has been learned about the characteristics of the RNA-seq datasets as well as the performance of the myriad of methods developed. In this review, we give an overall view of the developments in RNA-seq data analysis, including experimental design, with an explicit focus on quantification of gene expression and statistical approaches for differential expression. We also highlight emerging data types, such as single-cell RNA-seq and gene expression profiling using long-read technologies.


2019 ◽  
Author(s):  
Bastian Seelbinder ◽  
Thomas Wolf ◽  
Steffen Priebe ◽  
Sylvie McNamara ◽  
Silvia Gerber ◽  
...  

ABSTRACTIn transcriptomics, the study of the total set of RNAs transcribed by the cell, RNA sequencing (RNA-seq) has become the standard tool for analysing gene expression. The primary goal is the detection of genes whose expression changes significantly between two or more conditions, either for a single species or for two or more interacting species at the same time (dual RNA-seq, triple RNA-seq and so forth). The analysis of RNA-seq can be simplified as many steps of the data pre-processing can be standardised in a pipeline.In this publication we present the “GEO2RNAseq” pipeline for complete, quick and concurrent pre-processing of single, dual, and triple RNA-seq data. It covers all pre-processing steps starting from raw sequencing data to the analysis of differentially expressed genes, including various tables and figures to report intermediate and final results. Raw data may be provided in FASTQ format or can be downloaded automatically from the Gene Expression Omnibus repository. GEO2RNAseq strongly incorporates experimental as well as computational metadata. GEO2RNAseq is implemented in R, lightweight, easy to install via Conda and easy to use, but still very flexible through using modular programming and offering many extensions and alternative workflows.GEO2RNAseq is publicly available at https://anaconda.org/xentrics/r-geo2rnaseq and https://bitbucket.org/thomas_wolf/geo2rnaseq/overview, including source code, installation instruction, and comprehensive package documentation.


2021 ◽  
Author(s):  
Pablo E. García-Nieto ◽  
Ban Wang ◽  
Hunter B. Fraser

ABSTRACTBackgroundRNA sequencing has been widely used as an essential tool to probe gene expression. While standard practices have been established to analyze RNA-seq data, it is still challenging to detect and remove artifactual signals. Several factors such as sex, age, and sequencing technology have been found to bias these estimates. Probabilistic estimation of expression residuals (PEER) has been used to account for some systematic effects, but it has remained challenging to interpret these PEER factors.ResultsHere we show that transcriptome diversity – a simple metric based on Shannon entropy – explains a large portion of variability in gene expression, and is a major factor detected by PEER. We then show that transcriptome diversity has significant associations with multiple technical and biological variables across diverse organisms and datasets. This prevalent confounding factor provides a simple explanation for a major source of systematic biases in gene expression estimates.ConclusionsOur results show that transcriptome diversity is a metric that captures a systematic bias in RNA-seq and is the strongest known factor encoded in PEER covariates.


2019 ◽  
Author(s):  
Alemu Takele Assefa ◽  
Jo Vandesompele ◽  
Olivier Thas

SummarySPsimSeq is a semi-parametric simulation method for bulk and single cell RNA sequencing data. It simulates data from a good estimate of the actual distribution of a given real RNA-seq dataset. In contrast to existing approaches that assume a particular data distribution, our method constructs an empirical distribution of gene expression data from a given source RNA-seq experiment to faithfully capture the data characteristics of real data. Importantly, our method can be used to simulate a wide range of scenarios, such as single or multiple biological groups, systematic variations (e.g. confounding batch effects), and different sample sizes. It can also be used to simulate different gene expression units resulting from different library preparation protocols, such as read counts or UMI counts.Availability and implementationThe R package and associated documentation is available from https://github.com/CenterForStatistics-UGent/SPsimSeq.Supplementary informationSupplementary data are available at bioRχiv online.


Sign in / Sign up

Export Citation Format

Share Document