scholarly journals Empirical constraints on progressive shock metamorphism of magnetite from the Siljan impact structure, Sweden

Geology ◽  
2021 ◽  
Author(s):  
Sanna Holm-Alwmark ◽  
Timmons M. Erickson ◽  
Aaron J. Cavosie

Little is known about the microstructural behavior of magnetite during hypervelocity impact events, even though it is a widespread accessory mineral and an important magnetic carrier in terrestrial and extraterrestrial rocks. We report systematic electron backscatter diffraction crystallographic analysis of shock features in magnetite from a transect across the 52-km-diameter ca. 380 Ma Siljan impact structure in Sweden. Magnetite grains in granitoid samples contain brittle fracturing, crystal-plasticity, and lamellar twins. Deformation twins along {111} with shear direction of <112> are consistent with spinel-law twins. Inferred bulk shock pressures for the investigated samples, as constrained by planar deformation features (PDFs) in quartz and shock twins in zircon, range from 0 to 20 GPa; onset of shock-induced twinning in magnetite is observed at >5 GPa. These results highlight the utility of magnetite to record shock deformation in rocks that experience shock pressures >5 GPa, which may be useful in quartz-poor samples. Despite significant hydrothermal alteration and the variable transformation of host magnetite to hematite, shock effects are preserved, which demonstrates that magnetite is a reliable mineral for preserving shock deformation over geologic time.

Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 18 ◽  
Author(s):  
Alexey Ragozin ◽  
Dmitry Zedgenizov ◽  
Vladislav Shatsky ◽  
Konstantin Kuper ◽  
Hiroyuki Kagi

The paper presents new data on the internal structure of super-deep (sublithospheric) diamonds from Saõ-Luiz river placers (Brazil) and from alluvial placers of the northeastern Siberian platform (Yakutia). The sublithospheric origin of these diamonds is supported by the presence of mineral inclusions corresponding to associations of the transition zone and lower mantle. The features of morphology and internal structure have been studied by optical and scanning electron microscopy (SEM), cathodoluminescence topography (CL), and electron backscatter diffraction (EBSD) techniques. Diamonds typically have complicated growth histories displaying alternating episodes of growth, dissolution, and post-growth deformation and crushing processes. Most crystals have endured both plastic and brittle deformation during the growth history. Abundant deformation and resorption/growth features suggest a highly dynamic growth environment for super-deep diamonds. High temperatures expected in the transition zone and lower mantle could explain the plastic deformations of super-deep diamonds with low nitrogen content.


Author(s):  
Aaron J. Cavosie ◽  
Luigi Folco

ABSTRACT With an age of less than ~5000 yr and a diameter of 45 m, Kamil crater in Egypt is one of the youngest and smallest terrestrial impact craters known to date. Abundant evidence of shock-deformed sandstone has been reported from Kamil crater, including shatter cones, vesicular impact glass, high-pressure polymorphs of silica and car bon, planar deformation features (PDFs) and planar fractures (PFs) in quartz, dissociated zircon, melt veins, and intergranular melt, giving rise to a range of estimated shock pressures from ~20 to ~60 GPa. Here, we investigated shocked zircon from Kamil crater through characterization of microstructures in a centimeter-sized clast of shocked nonporous sandstone ejecta, previously described as containing quartz grains with PDFs and PFs, coesite, stishovite, diamond, and lechatelierite. Orientation analysis by electron backscatter diffraction (EBSD) showed that the quartz arenite consists of damaged detrital quartz grains surrounded by a matrix of either comminuted quartz or intergranular melt. Individual quartz grains are pervasively fractured (abundant PFs and PDFs); apparent isotropic crushing resulted in uniformly and highly dispersed orientation clusters on pole figures. Zircon grains are not abundant; however, four of 19 grains analyzed by EBSD contained {112} deformation twin lamellae, with individual lamellae ranging in length from 1 to 2 µm. Lengths of twin lamellae in Kamil zircon grains are anomalously short compared to those report-ed in shocked zircon from other impact structures, where individual lamellae are tens of micrometers long. Previous empirical studies have suggested that {112} twin lamellae in zircon form at ~20 GPa in non-porous target rocks, a finding supported by their coexistence, in some impactites, with high-pressure phases such as reidite. The only available experimental constraint, by diamond anvil cell, found {112} twins in zircon powder quenched at 20 GPa. The presence of coesite, stishovite, lechatelierite, and shocked quartz with PDFs in the studied sample is consistent with empirically derived pressure estimates of ~20 GPa for {112} twin formation in zircon in the ejecta sample from Kamil crater. Kamil thus represents the smallest and youngest impact structure where shock-twinned zircon has been reported. Given the apparent efficiency of {112} twin formation (21% of grains), shock-twinned zircon is here shown to provide a robust and readily identifiable record of shock deformation in a relatively common mineral at one of the smallest known terrestrial impact craters.


2015 ◽  
Vol 48 (1) ◽  
pp. 212-219 ◽  
Author(s):  
Carlos Fernando Ávila ◽  
Leonardo Lagoeiro ◽  
Paola Ferreira Barbosa ◽  
Leonardo Graça

The rhombohedral twinning in hematite has an important role in the accommodation of the deformation of hematite single crystals and hematite aggregates. It is a contact twinning and occurs as lamellae parallel to the \{10{\overline 1}2\} planes of hematite as a result of twin gliding on such planes. On account of the recent applications of electron backscatter diffraction (EBSD) techniques in a wide range of microstructural studies, the determination of symmetry operations that relate crystals in a deformed crystalline aggregate is crucial for the full textural characterization. This study presents an EBSD-based crystallographic analysis of the rhombohedral twinning on hematite crystals of a naturally deformed banded iron formation. Manipulations of theoretical pole figures depicting the symmetry relation of the rhombohedral twinning and misorientation and crystallographic data obtained by EBSD are used to establish the rotational relationship between twin and parent crystals. A method for determining pairs of axes and angles of rotation was developed which can be extended to any other twin laws or misorientation patterns in any other crystal system. It was found that the hematite rhombohedral twins are related to the parent crystal by an approximately 85° rotation about the 〈02{\overline 2}1〉 directions. Hence it could be determined that this consists of a macroscopic twinning element which is an alternative to the conventional ones used to describe the symmetry of the twin. It also matches microscopic twinning elements for the rhomb twinning law. Additionally, this method allows the determination of the crystallographic orientation of the twin lamellae and which particular 〈02{\overline 2}1〉 axis satisfies the 85°〈02{\overline 2}1〉 pair of rotation. The use of an unambiguous angle–axis pair of rotation allows the identification of twin boundaries in complex and finely grained aggregates and the distinction of twinning laws in a particular crystal.


2018 ◽  
Vol 51 (3) ◽  
pp. 809-817 ◽  
Author(s):  
Cyril Cayron ◽  
Roland Logé

Twinning is an important deformation mode of hexagonal close-packed metals. The crystallographic theory is based on the 150-year-old concept of simple shear. The habit plane of the twin is the shear plane; it is invariant. This article presents electron backscatter diffraction observations and crystallographic analysis of a millimetre-size twin in a magnesium single crystal whose habit plane, unambiguously determined both in the parent crystal and in its twin, is not an invariant plane. This experimental evidence demonstrates that macroscopic deformation twinning can be achieved by a mechanism that is not a simple shear. This unconventional twin is often co-formed with a new conventional twin that exhibits the lowest shear magnitude ever reported in metals. The existence of unconventional twinning introduces a shift of paradigm and calls for the development of new crystallographic theories of displacive transformations.


2020 ◽  
Author(s):  
Morgan E. Monz ◽  
Peter J. Hudleston ◽  
David J. Prior ◽  
Zachary Michels ◽  
Sheng Fan ◽  
...  

Abstract. Microstructures provide key insights into understanding the mechanical behavior of ice. Crystallographic preferred orientation (CPO) develops during plastic deformation as ice dynamically recrystallizes, with the dominance of intracrystalline glide on the basal plane. CPO patterns in fine-grained ice have been relatively well characterized and understood in experiments and nature, whereas CPO patterns in "warm" (T > −10 ºC), coarse-grained, natural ice remain enigmatic. Previous microstructural studies of coarse-grained ice have been limited to c-axis orientations using light optical measurements. We have developed a new sample preparation technique, by constructing composite sections, to allow us to use electron backscatter diffraction (EBSD) to obtain a representative, bulk CPO on coarse-grained ice. We suggest that a grain sampling bias of large, branching crystals that appear multiple times as island grains in thin section may result in the typical multiple maxima CPOs previously identified in warm, coarse-grained ice that has been subjected to prolonged shear. CPOs combined from multiple samples of highly sheared ice from Storglaciären provide a more comprehensive picture of the microstructure and yield a pronounced cluster of c-axes sub-normal to the shear plane and elongate or split in a plane normal to the shear direction, and a concomitant girdle of a-axes parallel to the shear plane with a maximum perpendicular to the shear direction. This pattern compares well with patterns produced by sub-sampling data sets from experimentally sheared ice at high homologous temperatures up to strains of ~ 1.5. Shear strains in the margin of Storglaciären are much higher than those in experimental work. At much lower natural strain rates, dynamic recrystallization, particularly grain boundary migration, may have been more effective so that the CPO has been continuously reset and represents a smaller, final fraction of the shear history, rather than the entire finite strain history.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sanna Holm-Alwmark ◽  
Carl Alwmark ◽  
Ludovic Ferrière ◽  
Matthias M. M. Meier ◽  
Sofie Lindström ◽  
...  

AbstractImpact ejecta formation and emplacement is of great importance when it comes to understanding the process of impact cratering and consequences of impact events in general. Here we present a multidisciplinary investigation of a distal impact ejecta layer, the Blockhorizont, that occurs near Bernhardzell in eastern Switzerland. We provide unambiguous evidence that this layer is impact-related by confirming the presence of shocked quartz grains exhibiting multiple sets of planar deformation features. Average shock pressures recorded by the quartz grains are ~ 19 GPa for the investigated sample. U–Pb dating of zircon grains from bentonites in close stratigraphic context allows us to constrain the depositional age of the Blockhorizont to ~ 14.8 Ma. This age, in combination with geochemical and paleontological analysis of ejecta particles, is consistent with deposition of this material as distal impact ejecta from the Ries impact structure, located ~ 180 km away, in Germany. Our observations are important for constraining models of impact ejecta emplacement as ballistically and non-ballistically transported fragments, derived from vastly different depths in the pre-impact target, occur together within the ejecta layer. These observations make the Ries ejecta one of the most completely preserved ejecta deposit on Earth for an impact structure of that size.


Sign in / Sign up

Export Citation Format

Share Document