scholarly journals Supplemental Material: Curved orogenic belts, back-arc basins, and obduction as consequences of collision at irregular continental margins

2021 ◽  
Author(s):  
Nicholas Schliffke ◽  
et al.

Detailed figures of the model evolution, as well as a short description of the methodology and parameters used.<br>

2021 ◽  
Author(s):  
Nicholas Schliffke ◽  
et al.

Detailed figures of the model evolution, as well as a short description of the methodology and parameters used.<br>


Geology ◽  
2021 ◽  
Author(s):  
Nicholas Schliffke ◽  
Jeroen van Hunen ◽  
Frédéric Gueydan ◽  
Valentina Magni ◽  
Mark B. Allen

Continental collisions commonly involve highly curved passive plate margins, leading to diachronous continental subduction during trench rollback. Such systems may feature back-arc extension and ophiolite obduction postdating initial collision. Modern examples include the Alboran and Banda arcs. Ancient systems include the Newfoundland and Norwegian Caledonides. While external forces or preexisting weaknesses are often invoked, we suggest that ophiolite obduction can equally be caused by internal stress buildup during collision. Here, we modeled collision with an irregular subducting continental margin in three-dimensional (3-D) thermo-mechanical models and used the generated stress field evolution to understand resulting geologic processes. Results show how tensional stresses are localized in the overriding plate during the diachronous onset of collision. These stresses thin the overriding plate and may open a back-arc spreading center. Collision along the entire trench follows rapidly, with inversion of this spreading center, ophiolite obduction, and compression in the overriding plate. The models show how subduction of an irregular continental margin can form a highly curved orogenic belt. With this mechanism, obduction of back-arc oceanic lithosphere naturally evolves from a given initial margin geometry during continental collision.


Author(s):  
John J. W. Rogers ◽  
M. Santosh

The earth’s organic life has changed continually for more than 3.5 billion years. This evolution may have resulted partly from environmental stress generated by tectonic activity within the earth and partly from processes independent of the earth’s interior. This chapter investigates these different effects in an attempt to determine the role that continents played in the evolution of organisms. Continents and tectonics associated with them may have influenced organic evolution in both active and passive ways. Active effects include several processes that partly controlled the earth’s surface environment. Climate change was caused partly by movements of continents and construction of orogenic belts. Continental rifting increased the area of shallow seas as new continental margins subsided. Changes in volume of ocean ridges and epeiric movements of continents caused marine transgressions and regressions. Temperatures of water in shallow seas increased or decreased as continents moved across latitudes. The major passive effects of continents and supercontinents result from their influence on diversity of organisms. When continents were broadly dispersed and occupied most latitudes, as on the present earth, this isolation resulted in shallow-water and subaerial families that contained numerous genera, genera with large numbers of species, and species divided among many different varieties. This diversity was clearly smaller at times when continents were aggregated into a few landmasses and particularly low when supercontinents permitted exchange of organisms throughout most of the world’s land and shallow seas. During times of major environmental stress, these differences would have restricted extinction of organisms to local species and genera during times of high diversity but might have permitted disappearance of whole orders and classes when diversity was low. Organic evolution was almost certainly affected by species diversity, but it may have occurred without any active control by tectonic processes. Although evolution probably occurs only when changing environments place stresses on organisms that enhance the competition among them, it is also possible that competition between organisms can cause evolution even without significant environmental change. Furthermore, some environmental change probably resulted from processes that are not related to the tectonics of the solid earth.


2014 ◽  
Vol 41 (2) ◽  
pp. 165 ◽  
Author(s):  
David M. Chew ◽  
Cees R. Van Staal

A combination of deep seismic imaging and drilling has demonstrated that the ocean-continent transition (OCT) of present-day, magma-poor, rifted continental margins is a zone of hyperextension characterized by extreme thinning of the continental crust that exhumed the lowermost crust and/or serpentinized continental mantle onto the seafloor. The OCT on present-day margins is difficult to sample, and so much of our knowledge on the detailed nature of OCT sequences comes from obducted, magma-poor OCT ophiolites such as those preserved in the upper portions of the Alpine fold-and-thrust belt. Allochthonous, lens-shaped bodies of ultramafic rock are common in many other ancient orogenic belts, such as the Caledonian – Appalachian orogen, yet their origin and tectonic significance remains uncertain. We summarize the occurrences of potential ancient OCTs within this orogen, commencing with Laurentian margin sequences where an OCT has previously been inferred (the Dalradian Supergroup of Scotland and Ireland and the Birchy Complex of Newfoundland). We then speculate on the origin of isolated occurrences of Alpine-type peridotite within Laurentian margin sequences in Quebec – Vermont and Virginia – North Carolina, focusing on rift-related units of Late Neoproterozoic age (so as to eliminate a Taconic ophiolite origin). A combination of poor exposure and pervasive Taconic deformation means that origin and emplacement of many ultramafic bodies in the Appalachians will remain uncertain. Nevertheless, the common occurrence of OCT-like rocks along the whole length of the Appalachian – Caledonian margin of Laurentia suggests that the opening of the Iapetus Ocean may have been accompanied by hyperextension and the formation of magma-poor margins along many segments.SOMMAIREDes travaux d’imagerie sismique et des forages profonds ont montré que la transition océan-continent (OCT) de marges continentales de divergence pauvre en magma exposée de nos jours, correspond à une zone d’hyper-étirement tectonique caractérisée par un amincissement extrême de la croûte continentale, qui a exhumé sur le fond marin, jusqu’à la tranche la plus profonde de la croûte continentale, voire du manteau continental serpentinisé.  Parce qu’on peut difficilement échantillonner l’OCT sur les marges actuelles, une grande partie de notre compréhension des détails de la nature de l’OCT provient d’ophiolites pauvres en magma d’une OCT obduite, comme celles préservées dans les portions supérieures de la bande plissée alpine.  Des masses lenticulaires de roches ultramafiques allochtones sont communes dans de nombreuses autres bandes orogéniques anciennes, comme l’orogène Calédonienne-Appalaches, mais leur origine et signification tectonique reste incertaine.  Nous présentons un sommaire des occurrences d’OCT potentielles anciennes de cet orogène, en commençant par des séquences de la marge laurentienne, où la présence d’OCT a déjà été déduites (le Supergroupe Dalradien d’Écosse et d'Irlande, et le complexe de Birchy de Terre-Neuve).  Nous spéculons ensuite sur l'origine de cas isolés de péridotite de type alpin dans des séquences de marge des Laurentides du Québec-Vermont et de la Virginie-Caroline du Nord, en nous concentrant sur les unités de rift d'âge néoprotérozoïque tardif (pour éviter les ophiolites du Taconique).  La conjonction d’affleurements de piètre qualité et de la déformation taconique omniprésente, signifie que l'origine et la mise en place de nombreuses masses ultramafiques dans les Appalaches demeureront incertaines.  Néanmoins, la présence fréquente de roches de type OCT tout le long de la marge Calédonnienne-Appalaches de Laurentia suggère que l'ouverture de l'océan Iapetus peut avoir été accompagnée d’hyper-étirement et de la formation de marges pauvres en magma le long de nombreux segments.


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 632
Author(s):  
Andrea Di Giulio ◽  
Chiara Amadori ◽  
Pierre Mueller ◽  
Antonio Langone

In convergent zones, several parts of the geodynamic system (e.g., continental margins, back-arc regions) can be deformed, uplifted, and eroded through time, each of them potentially delivering clastic sediments to neighboring basins. Tectonically driven events are mostly recorded in syntectonic clastic systems accumulated into different kinds of basins: trench, fore-arc, and back-arc basins in subduction zones and foredeep, thrust-top, and episutural basins in collisional settings. The most widely used tools for provenance analysis of synorogenic sediments and for unraveling the tectonic evolution of convergent zones are sandstone petrography and U–Pb dating of detrital zircon. In this paper, we present a comparison of previously published data discussing how these techniques are used to constrain provenance reconstructions and contribute to a better understanding of the tectonic evolution of (i) the Cretaceous transition from extensional to compressional regimes in the back-arc region of the southern Andean system; and (ii) the involvement of the passive European continental margin in the Western Alps subduction system during impending Alpine collision. In both cases, sediments delivered from the down-bending continental block are significantly involved. Our findings highlight its role as a detrital source, which is generally underestimated or even ignored in current tectonic models.


2002 ◽  
Vol 34 (6) ◽  
pp. 2113 ◽  
Author(s):  
Δ. ΜΟΥΝΤΡΑΚΗΣ

The Hellenic orogen consists of three orogenic belts: 1) the Cimmerian orogenic belt, including Rhodopian, Serbomacedonian, Circum Rhodope, Axios and Pelagonian zones, is the internal belt which has been created in pre-Late Jurassic times as a result of the northward drift of Cimmerian contrinental fragments from Gondwana towards Eurasia. Ophiolites from small ocean basins were mainly emplaced onto the Cimmerian continental margins in Middle Jurassic. 2) the Alpine orogenic belt, including External Hellenides and Pindos-Subpelagonian ophiolites and oceanic sediments (Neo-Tethyan), which has been created in Cretaceous-Paleogene times after the subduction of the Neotethyan oceanic crust beneath the Cimmerian-Eurasian plate and the collision of the Apulian microplate to the later, 3) the Mesogean orogenic belt along the External Hellenic orogenic arc as a result of the Mesogean-African underplate beneath the unique Alpine-Cimmerian-Eurasian plate in Miocen- Pliocene times and the exhumation of the Cretan-Southern Peloponesus tectonic windows. Structural analysis and detailed studies of the geometry and kinematics suggest that during Alpine-Mesogean orogenic process a SW-ward migration of successive complessional and extensional tectonic events took place resulted of successive subductions. Thus, crustal thickening produced by compressional tectonics in each area was followed by an extensional exhumation of underplate rocks as tectonic windows.


Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 499
Author(s):  
Marcello Viti ◽  
Enzo Mantovani ◽  
Daniele Babbucci ◽  
Caterina Tamburelli ◽  
Marcello Caggiati ◽  
...  

Tectonic activity in the Mediterranean area (involving migrations of old orogenic belts, formation of basins and building of orogenic systems) has been determined by the convergence of the confining plates (Nubia, Arabia and Eurasia). Such convergence has been mainly accommodated by the consumption of oceanic and thinned continental domains, triggered by the lateral escapes of orogenic wedges. Here, we argue that the implications of the above basic concepts can allow plausible explanations for the very complex time-space distribution of tectonic processes in the study area, with particular regard to the development of Trench-Arc-Back Arc systems. In the late Oligocene and lower–middle Miocene, the consumption of the eastern Alpine Tethys oceanic domain was caused by the eastward to SE ward migration/bending of the Alpine–Iberian belt, driven by the Nubia–Eurasia convergence. The crustal stretching that developed in the wake of that migrating Arc led to formation of the Balearic basin, whereas accretionary activity along the trench zone formed the Apennine belt. Since the collision of the Anatolian–Aegean–Pelagonian system (extruding westward in response to the indentation of the Arabian promontory) with the Nubia-Adriatic continental domain, around the late Miocene–early Pliocene, the tectonic setting in the central Mediterranean area underwent a major reorganization, aimed at activating a less rested shortening pattern, which led to the consumption of the remnant oceanic and thinned continental domains in the central Mediterranean area.


Author(s):  
Г.П. Яроцкий ◽  
Х.О. Чотчаев

Актуальность рассматриваемой темы в том, что орогенные пояса материковой части Камчатского края насыщены полезными ископаемыми, приуроченных к поясам, образованным последовательным приростом окраин континента от древних с северо-запада к юго-востоку. Такими поясами с месторождениями Ag, Au, Sn, Hg, S являются Северо-Западно-Корякский олигоценовый и Южно-Корякский миоценовый, образованные на северной и южной границе Центрально-Корякской окраины позднемелового континента. Они сформированы в олигоцене и миоцене изолированными вулканогенами локальных андезитовых полей, прорванных гранитоидами тектонической активизации. С ними связаны рудные площади, локализация которых позволит обеспечить прирост запасов разрабатываемых россыпей платиноидов. Цель работы заключается в установлении тектонических закономерностей образования вулканогенов, связанных с ними рудных районов и получения новых данных по их прогнозу. В Северо-Западном поясе оформилась металлогеническая зона с Уннэйваямским, Гайчаваямским и Пальматкинским районами, сопряжёнными с одноименными вулканогенами, в Южно-Камчатском с Ветроваямским вулканогеном. Методология и методы исследования. Методология заключена в глыбово-клавишной структуре литосферы и её земной коры на активных окраинах континента. Методика основана на установлении системной связи структурных элементов геолого-геофизической системы тектоника-вулканогены . Результаты работ и их анализ. Предложена схема закономерностей размещения известных и прогнозируемых рудных районов, узлов юго-запада Корякского нагорья. Они обусловлены глыбово-клавишной тектоникой и локализованы в звеньях серии продольных субпараллельных разновозрастных региональных структур СВ простирания, последовательно наращивающих континент к юго-востоку. Звенья являются дискретными и определяют размеры рудных районов. Рассмотрены выделяемые звенья Северо-Западно-Корякского олигоценового и Южно-Корякского миоценового поясов. В первом СЗ поперечными межглыбовыми разломами литосферы образованы вулканогены гнездового типа. Они возникли на пересечении фундамента позднего мела и южной окраины сопредельной Пенжинской СФЗ поперечными межглыбовыми разломами. В пересечениях образуется литосферный столб вещества гранитоидной активизации верхней мантии и позднемелового осадочного разреза фундамента. Делается вывод, что в Южно-Корякском поясе вулканоген является линейным, образованным заключением линейного СВ Ветроваямского выступа фундамента и чехла между двумя поперечными межглыбовыми разломами. В нём рудоносными вторичными кварцитами создан Ильпинский рудный район с крупными месторождениями самородной серы с Ag, Au, Hg, S. Орогенный вулканизм на активных окраинах континентов сопряжён с основными элементами тектоники и магматизма, создавшими условия образования минерагенических таксонов. На примерах орогенных поясов олигоцена и миоцена очевидна роль геотектонических и металлогенических аспектов авторской методологии глыбово-клавишной структуры литосферы активных окраин. Она эффективна в прогнозе рудных площадей и их оценке последующими геологоразведочными работами. The relevance of the work is that the orogenic belts of the mainland of the Kamchatka Territory are saturated with minerals confined to the belts formed by the successive growth of the continental margins from the ancient ones from the north-west to the south-east. Such belts with deposits of Ag, Au, Sn, Hg, S are the Northwest Koryak Oligocene and South Koryak Miocene, formed on the northern and southern borders of the Central Koryak margin of the Late Cretaceous continent. They are formed in the Oligocene and Miocene by isolated volcanogens of local andesitic fields, broken by granitoids of tectonic activation. Ore areas are associated with them, the localization of which will ensure an increase in the reserves of developed placer deposits. The purpose of the work is to establish tectonic patterns of formation of volcanogens, associated ore regions and obtain new data on their forecast. In the North-Western zone, a metallogenic zone took shape with the Unneivayamsky, Gaichavayamsky and Palmatkinsky regions, associated with the same named volcanogenes, in the South Kamchatka - with the Vetrovayamsky volcanogen. Methodology and research methods. The methodology lies in the block-key structure of the lithosphere and its earths crust on the active margins of the continent. The methodology is based on establishing a systemic connection between the structural elements of the geological and geophysical system tectonics-volcanogens. The results of the work and their analysis. A scheme of patterns of distribution of known and predicted ore regions, nodes of the south-west of the Koryak upland is proposed. They are caused by block-key tectonics and are localized in the links of a series of longitudinal subparallel regionally different age structures of NE strike, successively expanding the continent to the southeast. The links are discrete and determine the size of the ore regions. The distinguished links of the Northwest Koryak Oligocene and South Koryak Miocene belts are considered. In the first northwestern region, nesting volcanogens are formed by transverse interblock faults of the lithosphere. They arose at the intersection of the Late Cretaceous foundation and the southern edge of the adjacent Penzhinsk structural-facial zone with transverse interblock faults. At the intersections, a lithospheric column of granitoid activation matter of the upper mantle and the Late Cretaceous sedimentary section of the basement is formed. It is concluded that the volcanogen in the South Koryak belt, has a linear nature, formed by the conclusion of a linear NE of Vetrovayamsk ledge of the basement and cover between two transverse interblock faults. There ore-bearing secondary quartzites created the Ilpinsk ore region with large deposits of native sulfur with Ag, Au, Hg, S. The orogenic volcanism on the active margins of the continents is associated with the basic elements of tectonics and magmatism, which created the conditions for the formation of minerogenic taxons. The role of geotectonic and metallogenic aspects of the authors methodology of the block-key structure of the active lithosphere margins is evident on the examples of the orogenic Oligocene and Miocene belts. It is effective in forecasting ore areas and evaluating them with subsequent exploration works


2016 ◽  
Vol 53 (11) ◽  
pp. 1177-1189 ◽  
Author(s):  
Paul F. Hoffman ◽  
Eric J. Bellefroid ◽  
Benjamin W. Johnson ◽  
Malcolm S.W. Hodgskiss ◽  
Daniel P. Schrag ◽  
...  

The existence of coherent, large-scale, submarine landslides on modern continental margins implies that their apparent rarity in ancient orogenic belts is due to non-recognition. Two map-scale, coherent, pre-orogenic, normal-sense detachment structures of Ediacaran age are present in the Kaoko belt, a well-exposed arc–continent collision zone in northwestern Namibia. The structures occur within the Otavi Group, a Neoproterozoic carbonate shelf succession. They are brittle structures, evident only through stratigraphic omissions of 400 m or more, that ramp down to the west with overall ramp angles of 1.1° and 1.3° with respect to stratigraphic horizons. The separations of matching footwall and hangingwall stratigraphic cut-offs require horizontal translations >20 km for each detachment. One of the detachments is remarkably narrow (5 km) in the up-dip direction, just one fourth of its translation. The other detachment is stratigraphically dated at the shelf–foredeep transition, when the passive margin was abortively subducted westward, in the direction of submarine sliding. Trenchward sliding on the foreslope occurred concurrently with deep karstification of the autochthonous carbonate succession to the east, presumably due to forebulge uplift and (or) conjectural basin-scale base-level fall. We expect that similar detachments exist in other orogenic belts, and failure to recognize them can lead to misinterpretations of stratigraphy, sedimentary facies, and paleogeography.


2008 ◽  
Vol 179 (1) ◽  
pp. 51-72 ◽  
Author(s):  
Iginio Dieni ◽  
Francesco Massari ◽  
Jacques Médus

Abstract The Cuccuru ’e Flores Conglomerate of eastern Sardinia, a syntectonic unit lining major Cenozoic faults, has been dated by means of palynology at the early middle Lutetian. The deposits were mainly laid down by sediment gravity flows in a subaqueous setting and formed aprons of laterally interfingering debris cones at the toe of active tectonic scarps. Most clasts of rudites are of local provenance. Interestingly, the rudites include minor amounts of clasts of formations which no longer crop out in the area, providing important information on the reconstruction of the original stratigraphic succession and palaeogeography, especially during late Cretaceous and early Palaeogene times. During the Eocene, i.e. in a pre-rotation stage, Sardinia was subjected to the influence of both Alpine and Pyrenean orogenic belts. In eastern Sardinia, the compressional stress field was consistent with that existing in the foreland of the Alpine chain in Corsica, and was expressed by significant wrench tectonics affecting the Variscan basement and the pre-Oligocene sedimentary cover. Deformations associated with major strike-slip faults, such as enéchelon folds and positive flower structures occurring in fault-restraining bends, suggest a shortening direction around N105° (in present-day coordinates). A subsequent wrenching phase of Late Oligocene-Early Miocene age involved reactivation of former “Alpine” faults in a sharply different stress field. This tectonics reflects the intermediate position of the eastern Sardinia belt between the area affected by back-arc stretching (the Sardinian rift and the Liguro-Provençal basin) and the arcuate Apenninic subduction front active in a framework of left-lateral oblique plate convergence.


Sign in / Sign up

Export Citation Format

Share Document