Software for the Problem of Constructing Cutting Tool Paths in CAD/CAM Systems for Technological Preparation of Cutting Processes

2021 ◽  
Vol 82 (3) ◽  
pp. 468-480
Author(s):  
T. A. Makarovskikh ◽  
A. V. Panyukov
Author(s):  
A. V. Petukhov

The modern stage of development of CAD-systems is characterized by a significant expansion of the scope of their use. An interesting direction for improving CAD systems is their integration with CAM systems. One of the main tasks solved by CAM systems is the development of control programs for CNC machines. Many software developers for automation of design and technological preparation of production have already equipped their systems with appropriate modules. These circumstances pose an urgent task for higher educational institutions to introduce the study of integrated CAD/CAM systems into the educational process of training design engineers. In this case, the emphasis should be placed on the practical mastery of the skills of developing control programs using a 3D-model of the manufactured part. The stages of preparation for the implementation of the system are described, starting with the analysis of the market of necessary software products and ending with the adaptation of the licensed system to the conditions of use in the educational process of the university. A link is given to the description of the methodology used in the assessment of automated systems at the stage preceding the tender for their purchase. It is emphasized that the study of the possibility of using a CAD/CAM system in the preparation of design engineers was carried out by students during the course and diploma projects in the discipline “Automated systems for technological preparation of production”. The methodology for designing control programs used by students is given, and the results obtained are assessed.


2012 ◽  
Vol 516 ◽  
pp. 96-101
Author(s):  
Hideki Aoyama ◽  
Yumiko Suzuki ◽  
Noriaki Sano

Currently used CAM systems for 5-axis machining can determine tool paths with collision-free tool postures. However, the algorithm implemented in the CAM systems sometimes generates un-optimum tool paths and postures from the viewpoint of machining processes and machine tool operation. This study proposes two methods to determine tool paths and tool postures for 5-axis machining based on the viewpoints of human intuition and minimum cusp height for resolving the problems. A method is developed for inputting the positions and postures of a cutting tool when executing virtual machining. In the execution of virtual machining, a virtual cutting tool can be intuitively moved by a haptic device to determine the desired locations and postures of the cutting tool. By using the system, the tool locations and tool postures to machine complicated shapes with overhang can be easily determined based on the operators intuition. Another method is for determining tool postures for making minimum cusp height by matching the cutting edge of a flat end-mill to the cross-section shape at a point on surfaces to be machined. A basic system to determine the tool postures based on making minimum cusp height was developed. The cusp height on the surfaces generated by the basic system was smaller than the height generated by 3-axis ball-end milling.


2011 ◽  
Vol 223 ◽  
pp. 911-917 ◽  
Author(s):  
Berend Denkena ◽  
Volker Böß ◽  
Patryk Manuel Hoppe

The focus of CAM systems is on effectively creating cutting tool paths. However, collision risk is very high on multi axes machines when performing non-cutting traverse moves. If available, CAM systems offer limited setting options for non-cutting tool moves. In this paper an approach is presented that allows to automatically generating non-cutting tool paths. Process planners will not only be released from developing and simulating time-consuming multi axes traverse moves. The automatically calculated traverse moves will also machine-specifically optimized with respect to various optimization criteria.


2019 ◽  
Vol 299 ◽  
pp. 03001
Author(s):  
Tomáš Dodok ◽  
Nadežda Čuboňová

The optimization has an important role in machining processes preparation of NC programs. The article deals with the possibilities of the optimization using at utilization of the NC tool paths in CAD/CAM systems. The experiments deal with the possibility of optimization option in concrete CAD/CAM system. Particularly were compared optimized toolpaths from CAD / CAM system Creo with toolpaths optimized in an optimization program Optimizer based on genetic algorithms.


2015 ◽  
Vol 808 ◽  
pp. 280-285
Author(s):  
Nadežda Čuboňová

Today's modern production already not does without sophisticated CAD/CAM system. The present CAD/CAM systems integrate part modelling and engineering design, proposal of technological documentation in the form of NC programs and operational management of production within a one computer system. Their utilization allows the programmer to create machining technology, to define the tool paths and to generate NC programs for very complex shape parts. The article focuses on the use of CAD/CAM system Edgecam, in the formation of the machining process for a milling Machine Emco Concept Mill (CM) 105. It describes the creation of postprocessor for Sinumerik 840D control system and its application and verifying in the production of specific components.


Author(s):  
ERIC RAMALHO FERREIRA DE CARVALHO ◽  
MARCOS VINICYUS OLIVEIRA ◽  
erijanio Silva ◽  
Gutembergy Diniz ◽  
João Dehon Rocha Junior ◽  
...  
Keyword(s):  
Cad Cam ◽  

2021 ◽  
Vol 11 (2) ◽  
pp. 857
Author(s):  
Keunbada Son ◽  
Kyu-Bok Lee

The purpose of this in vitro study was to evaluate marginal and internal fits of ceramic crowns fabricated with chairside computer-aided design and manufacturing (CAD/CAM) systems. An experimental model based on ISO 12836:2015 was digitally scanned with different intraoral scanners (Omnicam (CEREC), EZIS PO (DDS), and CS3500 (Carestream)). Ceramic crowns were fabricated using the CAD/CAM process recommended by each system (CEREC, EZIS, and Carestream systems; N = 15). The 3-dimensional (3D) marginal and internal fit of each ceramic crown was measured using a 3D inspection software (Geomagic control X). Differences among the systems and various measurements were evaluated using the Kruskal–Wallis test. Statistically significant differences were validated using pairwise comparisons (α = 0.05). Occlusal gaps in the CEREC, EZIS, and Carestream groups were 113.0, 161.3, and 438.2 µm, respectively (p < 0.001). The axial gaps were 83.4, 78.0, and 107.9 µm, respectively. The marginal gaps were 77.8, 99.3, and 60.6 µm, respectively, and the whole gaps were 85.9, 107.3, and 214.0 µm, respectively. Significant differences were observed with the EZIS system compared with the other two systems in terms of the marginal gap sizes. The CEREC system showed no significant differences among the four measured regions. However, the EZIS and Carestream systems did show a statistically significant difference (p < 0.05). All three systems were judged to be capable of fabricating clinically acceptable prostheses, because the marginal gap, which is the most important factor in the marginal fit of prostheses, was recorded to be below 100 µm in all three systems.


2014 ◽  
Vol 598 ◽  
pp. 591-594 ◽  
Author(s):  
Li Yan Zhang

ISO 14649, known as STEP-NC, is new model of data transfer between CAD/CAM systems and CNC machines. In this paper, the modeling based on machining feature is proposed. The machining feature comes from the manufacturing process considering the restriction of machining technology and machining resource. Then the framework for computer aided process planning is presented, where the algorithms of operation planning is studied. The practical example has been provided and results indicate that machining feature based model can integrate with CAPP and STEP-NC seamlessly.


2014 ◽  
Vol 87 ◽  
pp. 162-168
Author(s):  
Paula Cipriano da Silva ◽  
Roberto de Oliveira Magnago ◽  
Camila Aparecida Araujo da Silva ◽  
Bianca de Almeida Fortes ◽  
Claudinei dos Santos

ZrO2(Y2O3)-based ceramics with coloring gradient can facilitate the development of dental prosthesis by the improvement of esthetic properties. In this work, ZrO2 powders with different particle sizes were investigated. White and yellow zirconia powders (TOSOH Corporation-Japan) were characterized by particles size distribution using nanoSight-LM20 analyzer. Furthermore, samples were characterized by X-Ray diffraction, Scanning Electron Microscopy and relative density. Compacts with two layers, one white and one yellow were uniaxially pressed at 80MPa and sintered at 1530°C-120min. The yellow-powder presented average particles size of 180±66nm, while the white-powder presented particles size of 198±73nm. After sintering, full dense ceramics with tetragonal phase were obtained. The linear shrinkage of the yellow and white-layer was 22.75% and 22.05% respectively. This difference in shrinkage is important in the machining of prostheses in ceramic CAD/CAM systems, because they lead to difficulties in adapting this customized prosthesis in patients.


Sign in / Sign up

Export Citation Format

Share Document