Influence of nonequilibrium processes of radiation cooling of combustion products on the content of nitrogen oxides in atmospheric emissions

2006 ◽  
Vol 409 (1) ◽  
pp. 784-786
Author(s):  
K. Ya. Kondratyev ◽  
N. I. Moskalenko ◽  
R. I. Nezmetdinov
2020 ◽  
Vol 0 (10) ◽  
pp. 35-40
Author(s):  
S.I. Gertsyk ◽  
◽  
I.V. Belyakov ◽  

The formation probability of nitrogen oxides in combustion products of mixed blast-furnace and natural gases under different conditions of combustion was calculated. It has been found out that heating the air incoming into burners of high-temperature blast-furnaces sharply increases concentration of nitrogen oxides in combustion products (by 1.5-1.75 times). It was notices that in furnaces where temperature was less than 950-1000 °С, heating the air up to 400 °С increased NOx content in gases released to the atmosphere no more than by 20-23%, and oxide concentration was in limits of sanitary standards.


2014 ◽  
Vol 59 (4) ◽  
pp. 897-912 ◽  
Author(s):  
Marek Bogacki ◽  
Jan Macuda

Abstract The hydraulic fracturing jobs performed on shale rocks are connected with atmospheric emissions of dusts and exhaust gases from high-power motors supplying pump aggregates used for fracturing operations and from other technological devices. The total power of motors driving technological systems depends on the specific character of deposit and well and may range between a dozen to tens of thousands kW. An exemplary set of technological systems used for frac jobs is presented in figure 1. The following substances are emitted to the atmosphere during engine operation, e.g. nitrogen oxides (NOx), sulfur dioxide (SO2), carbon oxide (CO), dust PM10, ammonia, benzo(a)pyrene (B(a)P), benzene, toluene, xylene, formaldehyde, acetaldehyde, acrolein. As a consequence admissible concentrations of these substances in air can be exceeded. The influence of dust and gaseous emissions accompanying shale rock fracturing jobs is addressed in this paper. Model analyses were performed. An exemplary model of a process used for simulating propagation of atmospheric emissions in a specified calculation area (1,150 m × 1,150 m) were based on the analysis of hydraulic fracturing jobs performed in wells in Poland and abroad. For making calculations more actual, the model was located in the Gdańsk area and was ascribed its typical meteorological and orographic parameters. In the center of this area a rig site 150 m x 150 m was distinguished. The emission field was generated by 12 high-power engines supplying pump aggregates, 1680 kW each. The time of work of particular engines was established for 52 hrs (13 frac jobs, each lasting 4 hrs). It was assumed that all engines will operate simultaneously and using 100% of their power. Attention was paid to the correct modelling of the real emission field. Technical parameters of motors and the applied fuels were characterized. Emission indices were worked out by, e.g. U.S. Environmental Protection Agency or European Environment Agency. The calculations of air pollutions from analyzed motors were performed with a mathematical modelling method using Gaussian plum. The results of calculations could be used for evaluating spatial distribution of maximum 1 hour concentrations (S1), incidence of exceeding admissible 1 hour concentration values (P(D1)), percentile 99.8 or 99.726 from 1 hour concentrations and average concentrations (Sa) for selected most important for the air quality contaminants, i.e. NOx (as NO2), SO2, CO, PM10, benzo(a)pyrene, benzene, toluene, xylene, formaldehyde, acetaldehyde and acrolein. The results of calculated air concentrations of selected substances on the rig border are listed in table 9, whereas spatial distributions of NOx and PM10 concentrations in figures 3 to 8. The analysis of the obtained results did not reveal cases of exceeding Polish emission standards. However, nitrogen oxide (NOx) or dust PM10 can be expected to exceed these values, e.g. in a situation when the total power installed in motors driving technological systems in the course of hydraulic fracking will be higher than assumed in the analyses. The results of calculations show to a significant impact of nitrogen oxides (NOx) and dust PM10 emissions on air quality. The risk that emission standards are exceeded beyond the rig area is conditioned both by technological factors (total power of operating motors, parameters of combusted fuel, reduced emission technologies applied to engines, duration of frac jobs, etc.) and a number of external factors, e.g. meteorological and orographic factors or high level of emitted substances in air within the rig area.


2018 ◽  
pp. 36-41 ◽  
Author(s):  
Роман Миколайович Радченко ◽  
Максим Андрійович Пирисунько

Solving the problem of ocean's airspace polluting with harmful emissions of ship-generated diesel engines by exhaust gases is associated with the creation of highly effective technologies for the neutralization of nitrogen oxides NOx from the diesel plant that apply both to vessels in service, designed and built. The air entering the engine is a working fluid that carries out a certain thermodynamic cycle, resulting in a change in its chemical composition, and the exhaust gas mixture contains many components. Emissions of harmful substances during the combustion of marine fuels are limited in accordance with international programs for the protection of the atmosphere and requirements of the International Maritime Organization IMO. Requirements apply all groups of harmful emissions of marine engines. The most stringent of them concern nitrogen oxides NOx and sulfur oxides SOx. To reduce harmful emissions from the exhaust gases into the environment, scientists and world leaders in engine construction, such as MAN Energy Solutions and Wärtsilä, apply and offer a variety of techniques to reduce the number of harmful substances in the exhaust gases. One of the most promising is the exhaust gas recirculation system (EGRS) of the ship diesel engine. Its advantage over other methods is the insignificant impact on the operation of the engine. During the exhaust gas recycling a temperature of the flame in the combustion chamber decreases, which leads to the reduction of NOx number. This is a consequence of the high rates of carbon dioxide and water vapor. Since the combustion rate is reduced, the exhaust temperature and the thermal load on the engine part are increased. The dilution of the inflow air with waste gas reduces the oxygen content in the supercharged air from 21 to 13%. The possibilities of the technology of the system of recirculation of exhaust gases of a marine engine are limited by the value of the ratio of O2/CO2 in the intake air, due to which the amount of combustion products at the inlet is limited to no more than 30%


2018 ◽  
Vol 944 ◽  
pp. 012015 ◽  
Author(s):  
I A Berg ◽  
S V Porshnev ◽  
V Y Oshchepkova ◽  
M Kit

2018 ◽  
Vol 191 (11) ◽  
pp. 2071-2081 ◽  
Author(s):  
Geniy V. Kuznetsov ◽  
Stanislav A. Jankovsky ◽  
Anton A. Tolokolnikov ◽  
Andrey V. Zenkov

2020 ◽  
Vol 14 (3) ◽  
Author(s):  
G. Krusir ◽  
I. Kondratenko ◽  
A. Garkoviсh ◽  
T. Shpyrko ◽  
L. Lobotskaya

The paper considers how to decrease the concentration of nitrogen oxides in gas emissions of bakery enterprises. Nitrogen oxides (NOx) formed in the course of burning natural gas  are responsible for more than 90% of an enterprise’s hazard category. So, it has been determined how much NOx is contained in exhaust gases emitted at different loadings on the floor of the oven at an enterprise,  this parameter being the main characteristic of the effectiveness  of ovens and their impact on the environment. The paper presents the results of experiments that have allowed determining the regression equations describing how the NOx quantity per unit of output in an enterprise’s exhaust gases depends on the amount of the fuel consumed and on the loading on the floor of baking ovens. The procedure of the experiments has been described, and the numerical results have been presented and analysed. It has been established that when making a loaf of wheat-flour oven-bottom bread weighing 0.9 kg,  with 70% loading on the floor of an oven (PPC1381), the nitrogen oxides concentration in combustion products is 212.00 μg/m3, and the specific NOx  formation is 292.25 μg/kg. The nitrogen oxides concentration is 152.00 μg/m3, and the specific formation is 306.00 μg/kg when the oven floor loading is 40%. If a similar range of products is baked in ovens Minel100 with the maximum-loaded and half-loaded oven floor, the production is accompanied by specific nitrogen oxide emissions of 239.50  μg/kg  and 247.80 μg/kg respectively. When enriched buns of 0.1 kg are baked in ovens BN50 with the maximum-loaded and half-loaded oven floor, the process   is   accompanied   by   specific   nitrogen   oxide   emissions of 209.20 μg/kg and 265.96 μg/kg respectively. The nitrogen oxides content in gases withdrawn from bakery ovens has been instrumentally measured. This has allowed obtaining regression equations of dependence of the specific NOx weight in gas emissions on the amount of fuel consumed and on the oven floor  loading. It  has been found that in the ovens considered, the nitrogen oxide formation per output unit decreased when the oven floor loading increased, because less fuel is needed to make up for the loss of heat accompanying the emission of fumes. The contributions of the argument parameters have been determined according to the regression model to estimate the quantitative dependence. The amount of nitrogen oxides depends on the oven floor loading. A mathematical model has been developed describing how nitrogen oxide formation depends on the oven floor loading and fuel consumption. The model can be used to introduce an industry standard of quantification of nitrogen oxides formed when manufacturing a unit of output.


2021 ◽  
Vol 19 (5) ◽  
pp. 25-34
Author(s):  
Abdullah A. Abdullah

Humanity's relationship with the environment is a delicate balance. Since the industrial revolution, the world's population has grown at an exponential rate, and this has a major environmental effect. Deforestation, pollution, and global climate change are just a few of the negative consequences of population and technological growth. Particulates, Sulphur dioxide (SO2), and nitrogen oxides (NOx) are the primary pollutants that harm our health. These contaminants may be directly emitted into the atmosphere (primary pollutants) or formed in the atmosphere from primary pollutants reacting (secondary pollutants. Tropospheric ozone is created When water reacts with volatile organic compounds (VOC) and nitrogen oxides (NOx) in the presence of sunlight, nitrogen dioxide is produced. is formed when NO is oxidized, as Sulphur dioxide or nitrogen oxides react with water, acid rain results. These contaminants have negative consequences for human health (low concentrations cause eye, nose, throat, and lung irritation) and the environment, as they contribute to acidification and eutrophication, as well as the formation of particulates and tropospheric ozone (photochemical smog). Electricity production and the combustion of fossil fuels in high-temperature manufacturing processes is the primary source of SO2 and NOx. Particulates are as a direct product of any type of industrial combustion or heating. Particulates and nitrogen oxides (NOx) are two types of contaminants. also linked to traffic and transportation. All these molecules of greenhouse gases that penetrate the atmosphere It's called atmospheric emissions. In order to meet the Paris Agreement's goal of maintaining a 1.5°C average global temperature increase, net CO2 emissions must reach zero by 2050, implying that the amount entering the atmosphere must exceed the amount absorbed by natural and technological sinks.


2020 ◽  
Vol 0 (4) ◽  
pp. 34-40
Author(s):  
S.I. Gertsyk ◽  
◽  
I.V. Belyakov ◽  

Formation mechanisms of nitrogen oxides in combustion products of gaseous fuels with different calorific efficiency under different firing conditions have been studied. It was found out that most important factors that influence on the nitrogen oxide concentration in outgoing gases were a fuel firing temperature, a furnace temperature and heating the firing air that sharply (more than 1.5 time) increased content of nitrogen oxides in the combustion products.


Sign in / Sign up

Export Citation Format

Share Document