The Influence of Shale Rock Fracturing Equipment Operation on Atmospheric Air Quality

2014 ◽  
Vol 59 (4) ◽  
pp. 897-912 ◽  
Author(s):  
Marek Bogacki ◽  
Jan Macuda

Abstract The hydraulic fracturing jobs performed on shale rocks are connected with atmospheric emissions of dusts and exhaust gases from high-power motors supplying pump aggregates used for fracturing operations and from other technological devices. The total power of motors driving technological systems depends on the specific character of deposit and well and may range between a dozen to tens of thousands kW. An exemplary set of technological systems used for frac jobs is presented in figure 1. The following substances are emitted to the atmosphere during engine operation, e.g. nitrogen oxides (NOx), sulfur dioxide (SO2), carbon oxide (CO), dust PM10, ammonia, benzo(a)pyrene (B(a)P), benzene, toluene, xylene, formaldehyde, acetaldehyde, acrolein. As a consequence admissible concentrations of these substances in air can be exceeded. The influence of dust and gaseous emissions accompanying shale rock fracturing jobs is addressed in this paper. Model analyses were performed. An exemplary model of a process used for simulating propagation of atmospheric emissions in a specified calculation area (1,150 m × 1,150 m) were based on the analysis of hydraulic fracturing jobs performed in wells in Poland and abroad. For making calculations more actual, the model was located in the Gdańsk area and was ascribed its typical meteorological and orographic parameters. In the center of this area a rig site 150 m x 150 m was distinguished. The emission field was generated by 12 high-power engines supplying pump aggregates, 1680 kW each. The time of work of particular engines was established for 52 hrs (13 frac jobs, each lasting 4 hrs). It was assumed that all engines will operate simultaneously and using 100% of their power. Attention was paid to the correct modelling of the real emission field. Technical parameters of motors and the applied fuels were characterized. Emission indices were worked out by, e.g. U.S. Environmental Protection Agency or European Environment Agency. The calculations of air pollutions from analyzed motors were performed with a mathematical modelling method using Gaussian plum. The results of calculations could be used for evaluating spatial distribution of maximum 1 hour concentrations (S1), incidence of exceeding admissible 1 hour concentration values (P(D1)), percentile 99.8 or 99.726 from 1 hour concentrations and average concentrations (Sa) for selected most important for the air quality contaminants, i.e. NOx (as NO2), SO2, CO, PM10, benzo(a)pyrene, benzene, toluene, xylene, formaldehyde, acetaldehyde and acrolein. The results of calculated air concentrations of selected substances on the rig border are listed in table 9, whereas spatial distributions of NOx and PM10 concentrations in figures 3 to 8. The analysis of the obtained results did not reveal cases of exceeding Polish emission standards. However, nitrogen oxide (NOx) or dust PM10 can be expected to exceed these values, e.g. in a situation when the total power installed in motors driving technological systems in the course of hydraulic fracking will be higher than assumed in the analyses. The results of calculations show to a significant impact of nitrogen oxides (NOx) and dust PM10 emissions on air quality. The risk that emission standards are exceeded beyond the rig area is conditioned both by technological factors (total power of operating motors, parameters of combusted fuel, reduced emission technologies applied to engines, duration of frac jobs, etc.) and a number of external factors, e.g. meteorological and orographic factors or high level of emitted substances in air within the rig area.

Author(s):  
Said Naili ◽  
Amine Morsli

This work focuses on identifying the source of BTEX (Benzene, Toluene, Ethylbenzene, Xylene) emissions generated by hydrocarbon-related industrial activities and evaluation of its impact on ambient air quality according to European Union (EU) regulations during 2019. The spatial distribution of BTEX concentrations suggest that massive emissions are mainly due to the oil refining activity. BTEX concentration levels at the sampling sites show that benzene was more dominant. Considering the level of atmospheric pollution relative to the indicative value (2µg/m3) recommended by the EU, the ambient air is considered to be quite polluted with benzene content (5.36 µg/m3) produced mainly by emissions from the oil refining industrial complex.


Author(s):  
J. B. Moran ◽  
J. L. Miller

The Clean Air Act Amendments of 1970 provide the basis for a dramatic change in Federal air quality programs. The Act establishes new standards for motor vehicles and requires EPA to establish national ambient air quality standards, standards of performance for new stationary sources of pollution, and standards for stationary sources emitting hazardous substances. Further, it establishes procedures which allow states to set emission standards for existing sources in order to achieve national ambient air quality standards. The Act also permits the Administrator of EPA to register fuels and fuel additives and to regulate the use of motor vehicle fuels or fuel additives which pose a hazard to public health or welfare.National air quality standards for particulate matter have been established. Asbestos, mercury, and beryllium have been designated as hazardous air pollutants for which Federal emission standards have been proposed.


Chemosphere ◽  
2021 ◽  
Vol 268 ◽  
pp. 129385
Author(s):  
Xuguo Zhang ◽  
Jimmy C.H. Fung ◽  
Alexis K.H. Lau ◽  
Md Shakhaoat Hossain ◽  
Peter K.K. Louie ◽  
...  

2015 ◽  
Vol 15 (9) ◽  
pp. 5083-5097 ◽  
Author(s):  
M. D. Shaw ◽  
J. D. Lee ◽  
B. Davison ◽  
A. Vaughan ◽  
R. M. Purvis ◽  
...  

Abstract. Highly spatially resolved mixing ratios of benzene and toluene, nitrogen oxides (NOx) and ozone (O3) were measured in the atmospheric boundary layer above Greater London during the period 24 June to 9 July 2013 using a Dornier 228 aircraft. Toluene and benzene were determined in situ using a proton transfer reaction mass spectrometer (PTR-MS), NOx by dual-channel NOx chemiluminescence and O3 mixing ratios by UV absorption. Average mixing ratios observed over inner London at 360 ± 10 m a.g.l. were 0.20 ± 0.05, 0.28 ± 0.07, 13.2 ± 8.6, 21.0 ± 7.3 and 34.3 ± 15.2 ppbv for benzene, toluene, NO, NO2 and NOx respectively. Linear regression analysis between NO2, benzene and toluene mixing ratios yields a strong covariance, indicating that these compounds predominantly share the same or co-located sources within the city. Average mixing ratios measured at 360 ± 10 m a.g.l. over outer London were always lower than over inner London. Where traffic densities were highest, the toluene / benzene (T / B) concentration ratios were highest (average of 1.8 ± 0.5 ppbv ppbv-1), indicative of strong local sources. Daytime maxima in NOx, benzene and toluene mixing ratios were observed in the morning (~ 40 ppbv NOx, ~ 350 pptv toluene and ~ 200 pptv benzene) and in the mid-afternoon for ozone (~ 40 ppbv O3), all at 360 ± 10 m a.g.l.


2018 ◽  
Author(s):  
Suzane S. de Sá ◽  
Brett B. Palm ◽  
Pedro Campuzano-Jost ◽  
Douglas A. Day ◽  
Weiwei Hu ◽  
...  

Abstract. Fundamental to quantifying the influence of human activities on climate and air quality is an understanding of how anthropogenic emissions affect the concentrations and composition of airborne particulate matter (PM). The central Amazon basin, especially around the city of Manaus, Brazil, has experienced rapid changes in the past decades due to ongoing urbanization. Herein, changes in the concentration and composition of submicron PM due to pollution downwind of the Manaus metropolitan region are reported as part of the GoAmazon2014/5 experiment. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a suite of other gas- and particle-phase instruments were deployed at the T3 research site, 70 km downwind of Manaus, during the wet season. At this site, organic components represented on average 79 ± 7 % of the non-refractory PM1 mass concentration, which was in the same range as several upwind sites. The organic PM1 was, however, considerably more oxidized at T3 compared to upwind measurements. Positive-matrix factorization (PMF) was applied to the time series of organic mass spectra collected at the T3 site, yielding three factors representing secondary processes (73 ± 15 % of total organic mass concentration) and three factors representing primary anthropogenic emissions (27 ± 15 %). Fuzzy c-means clustering (FCM) was applied to the afternoon time series of concentrations of NOy, ozone, total particle number, black carbon, and sulfate. Four clusters were identified and characterized by distinct airmass origins and particle compositions. Two clusters, Bkgd-1 and Bkgd-2, were associated with background conditions. Bkgd-1 appeared to represent near-field atmospheric PM production and oxidation of a day or less. Bkgd-2 appeared to represent material transported and oxidized for two or more days, often with out-of-basin contributions. Two other clusters, Pol-1 and Pol-2, represented the Manaus influence, one apparently associated with the northern region of Manaus and the other with the southern region of the city. A composite of the PMF and FCM analyses provided insights into the anthropogenic effects on PM concentration and composition. The increase in mass concentration of submicron PM ranged from 25 % to 200 % under polluted compared to background conditions, including contributions from both primary and secondary PM. Furthermore, a comparison of PMF factor loadings for different clusters suggested a shift in the pathways of PM production under polluted conditions. Nitrogen oxides may have played a critical role in these shifts. Increased concentrations of nitrogen oxides can shift pathways of PM production from HO2-dominant to NO-dominant as well as increase the concentrations of oxidants in the atmosphere. Consequently, the oxidation of biogenic and anthropogenic precursor gases as well as the oxidative processing of pre-existing atmospheric PM can be accelerated. The combined set of results demonstrates the susceptibility of atmospheric chemistry, air quality, and associated climate forcing to anthropogenic perturbations over tropical forests.


2018 ◽  
Vol 9 (4) ◽  
pp. 51 ◽  
Author(s):  
Chengguo Li ◽  
Eli Brewer ◽  
Liem Pham ◽  
Heejung Jung

Air conditioner power consumption accounts for a large fraction of the total power used by hybrid and electric vehicles. This study examined the effects of three different cabin air ventilation settings on mobile air conditioner (MAC) power consumption, such as fresh mode with air conditioner on (ACF), fresh mode with air conditioner off (ACO), and air recirculation mode with air conditioner on (ACR). Tests were carried out for both indoor chassis dynamometer and on-road tests using a 2012 Toyota Prius plug-in hybrid electric vehicle. Real-time power consumption and fuel economy were calculated from On-Board Diagnostic-II (OBD-II) data and compared with results from the carbon balance method. MAC consumed 28.4% of the total vehicle power in ACR mode when tested with the Supplemental Federal Test Procedure (SFTP) SC03 driving cycle on the dynamometer, which was 6.1% less than in ACF mode. On the other hand, ACR and ACF mode did not show significant differences for the less aggressive on-road tests. This is likely due to the significantly lower driving loads experienced in the local driving route compared to the SC03 driving cycle. On-road and SC03 test results suggested that more aggressive driving tends to magnify the effects of the vehicle HVAC (heating, ventilation, and air conditioning) system settings. ACR conditions improved relative fuel economy (or vehicle energy efficiency) to that of ACO conditions by ~20% and ~8% compared to ACF conditions for SC03 and on-road tests, respectively. Furthermore, vehicle cabin air quality was measured and analyzed for the on-road tests. ACR conditions significantly reduced in-cabin particle concentrations, in terms of aerosol diffusion charger signal, by 92% compared to outside ambient conditions. These results indicate that cabin air recirculation is a promising method to improve vehicle fuel economy and improve cabin air quality.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 342 ◽  
Author(s):  
Patricia Arroyo ◽  
Jesús Lozano ◽  
José Suárez

This study addresses the development of a wireless gas sensor network with low cost, small size, and low consumption nodes for environmental applications and air quality detection. Throughout the article, the evolution of the design and development of the system is presented, describing four designed prototypes. The final proposed prototype node has the capacity to connect up to four metal oxide (MOX) gas sensors, and has high autonomy thanks to the use of solar panels, as well as having an indirect sampling system and a small size. ZigBee protocol is used to transmit data wirelessly to a self-developed data cloud. The discrimination capacity of the device was checked with the volatile organic compounds benzene, toluene, ethylbenzene, and xylene (BTEX). An improvement of the system was achieved to obtain optimal success rates in the classification stage with the final prototype. Data processing was carried out using techniques of pattern recognition and artificial intelligence, such as radial basis networks and principal component analysis (PCA).


2006 ◽  
Vol 911 ◽  
Author(s):  
Christopher Harris ◽  
Andrei O Konstantinov ◽  
Jan-Olov Svedberg ◽  
Ian Ray ◽  
Christer Hallin

AbstractThe development of high power, high efficiency silicon carbide RF MESFETs is reported. High power densities of over 3W/mm have been measured for devices with total power output in excess of 25W. The devices have been fabricated using a novel lateral epitaxy technique. The MESFET employs a buried p-type depletion stopper in order to suppress short channel effects and increase the operation voltage. The use of the depletion stopper also allows high RF signal gain, while maintaining high voltage operation capability. Single-cell components measured on-wafer demonstrate an Ft of 10 GHz and a high unilateral gain.Packaged 6-mm RF transistors have been evaluated using amplifier circuits designed for operation in classes A, AB or C. Operation in class AB demonstrated a saturated power of 20 W and a P1dB of 15W with a linear gain of over 16 dB at Vdd of 60 V for 2.25 GHz operation. Maximum drain efficiency is 56% for class AB operation, 48% at 1 dB compression point and 72% for class C at 2.25 GHz.


2017 ◽  
Author(s):  
Zhe Jiang ◽  
Helen Worden ◽  
John R. Worden ◽  
Daven K. Henze ◽  
Dylan B. A. Jones ◽  
...  

Abstract. Decreases in surface emissions of nitrogen oxides (NOx = NO + NO2) in North America have led to substantial improvements in air-quality over the last several decades. Here we show that satellite observations of tropospheric nitrogen dioxide (NO2) columns over the contiguous United States (US) do not decrease after about 2009, while surface NO2 concentrations continue to decline through to the present. This divergence, if it continues, could have a substantial impact on surface air quality due to mixing of free-tropospheric air into the boundary layer. Our results show only limited contributions from local effects such as fossil fuel emissions, lightning, or instrument artifacts, but we do find a possible relationship of NO2 changes to decadal climate variability. Our analysis demonstrates that the intensity of transpacific transport is stronger in El Niño years and weaker in La Niña years, and consequently, that decadal-scale climate variability impacts the contribution of Asian emissions on North American atmospheric composition. Because of the short lifetime, it is usually believed that the direct contribution of long-range transport to tropospheric NOx distribution is limited. If our hypothesis about transported Asian emissions is correct, then this observed divergence between satellite and surface NOx could indicate mechanisms that allow for either NOx or its reservoir species to have a larger than expected effect on North American tropospheric composition. These results therefore suggest more aircraft and satellite studies to determine the possible missing processes in our understanding of the long-range transport of tropospheric NOx.


Sign in / Sign up

Export Citation Format

Share Document