Diagnostics of the technical condition of pressure vessels operating under internal pressure by a thermal (thermal imaging) method

2008 ◽  
Vol 44 (10) ◽  
pp. 669-675
Author(s):  
O. N. Budadin ◽  
V. Yu. Kutyurin ◽  
V. O. Kaledin
2021 ◽  
Vol 22 (9) ◽  
pp. 4663
Author(s):  
Aleksandra Orzechowska ◽  
Martin Trtílek ◽  
Krzysztof Michał Tokarz ◽  
Renata Szymańska ◽  
Ewa Niewiadomska ◽  
...  

A non-destructive thermal imaging method was used to study the stomatal response of salt-treated Arabidopsis thaliana plants to excessive light. The plants were exposed to different levels of salt concentrations (0, 75, 150, and 220 mM NaCl). Time-dependent thermograms showed the changes in the temperature distribution over the lamina and provided new insights into the acute light-induced temporary response of Arabidopsis under short-term salinity. The initial response of plants, which was associated with stomatal aperture, revealed an exponential growth in temperature kinetics. Using a single-exponential function, we estimated the time constants of thermal courses of plants exposed to acute high light. The saline-induced impairment in stomatal movement caused the reduced stomatal conductance and transpiration rate. Limited transpiration of NaCl-treated plants resulted in an increased rosette temperature and decreased thermal time constants as compared to the controls. The net CO2 assimilation rate decreased for plants exposed to 220 mM NaCl; in the case of 75 mM NaCl treatment, an increase was observed. A significant decline in the maximal quantum yield of photosystem II under excessive light was noticeable for the control and NaCl-treated plants. This study provides evidence that thermal imaging as a highly sensitive technique may be useful for analyzing the stomatal aperture and movement under dynamic environmental conditions.


1981 ◽  
Vol 16 (3) ◽  
pp. 171-186 ◽  
Author(s):  
P Stanley ◽  
T D Campbell

Very thin cylindrical pressure vessels with torispherical end-closures have been tested under internal pressure until buckles developed in the knuckles of the ends. These were prototype vessels in an austenitic stainless steel. The preparation of the ends and the closed test vessels is outlined, and the instrumentation, test installation, and test procedure are described. Results are given and discussed for three typical ends (diameters 54, 81, and 108in.; thickness to diameter ratios 0.00237, 0.00158, and 0.00119). These include measured thickness and curvature distributions, strain data and the derived elastic stress indices, and pole deflection measurements. Some details of the observed time-dependent plasticity (or ‘cold creep’) are given. Details of two types of buckle that developed eventually in the vessel ends are also reported.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Gongfeng Jiang ◽  
Gang Chen ◽  
Liang Sun ◽  
Yiliang Zhang ◽  
Xiaoliang Jia ◽  
...  

Experimental results of uniaxial ratcheting tests for stainless steel 304 (SS304) under stress-controlled condition at room temperature showed that the elastic domain defined in this paper expands with accumulation of plastic strain. Both ratcheting strain and viscoplastic strain rates reduce with the increase of elastic domain, and the total strain will be saturated finally. If the saturated strain and corresponded peak stress of different experimental results under the stress ratio R ≥ 0 are plotted, a curve demonstrating the material shakedown states of SS304 can be constituted. Using this curve, the accumulated strain in a pressure vessel subjected to cyclic internal pressure can be determined by only an elastic-plastic analysis, and without the cycle-by-cycle analysis. Meanwhile, a physical experiment of a thin-walled pressure vessel subjected to cyclic internal pressure has been carried out to verify the feasibility and effectiveness of this noncyclic method. By comparison, the accumulated strains evaluated by the noncyclic method agreed well with those obtained from the experiments. The noncyclic method is simpler and more practical than the cycle-by-cycle method for engineering design.


2006 ◽  
Vol 129 (1) ◽  
pp. 211-215 ◽  
Author(s):  
John D. Fishburn

Within the current design codes for boilers, piping, and pressure vessels, there are many different equations for the thickness of a cylindrical section under internal pressure. A reassessment of these various formulations, using the original data, is described together with more recent developments in the state of the art. A single formula, which can be demonstrated to retain the same design margin in both the time-dependent and time-independent regimes, is shown to give the best correlation with the experimental data and is proposed for consideration for inclusion in the design codes.


2015 ◽  
Vol 33 (1) ◽  
pp. 81-90
Author(s):  
Zbigniew Skorupka

Abstract Friction brake temperature due to its influence on brakes’ operation is subject to many test and studies. Measurements methods of this important brake parameter are being continuously developed. In order to withstand difficulty in temperature evaluation in full brake system as well as in isolated friction pair is use of contactless measurement methods. Currently, the most widespread contactless testing method of the thermal effects is to measure infrared emission by pyrometers or thermographic (infrared) cameras. Thermal imaging method wasn’t used so far during aviation brake materials usefulness evaluation and certification testing performed in Instytut Lotnictwa Landing Gear Laboratory. In this paper, author described performed friction materials tests which were recorded with thermal imaging camera as well as evaluated usefulness of the method by comparing its accuracy to thermocouple measurement.


2018 ◽  
Vol 18 (4) ◽  
pp. 1715-1728 ◽  
Author(s):  
Shokrollah Sharifi ◽  
Soheil Gohari ◽  
Masoumeh Sharifiteshnizi ◽  
Reza Alebrahim ◽  
Colin Burvill ◽  
...  

2020 ◽  
Author(s):  
J. I. Watjen ◽  
M. T. Schifano ◽  
M. N. Sexton

Abstract Pressure vessels and sealed canisters are designed to maintain seal integrity under a maximum internal pressure. When the temperature inside the canister rises, the internal pressure rises accordingly. The presence of condensable liquid-vapor mixtures can create a strong relationship between the pressure and temperature. An isothermal container admits a straightforward thermodynamic pressure calculation; however, large temperature gradients inside the container require complex multiphase conjugate heat transfer calculations to predict accurate pressures. A simplified prediction using the peak internal temperature to find the saturated pressure of the condensable fluid may introduce unrealistic pressures when significant fluid mass exists in a cooler location of the container. This work presents methodology to calculate the pressure of a condensable fluid in a sealed container with large internal temperature differences using a two-temperature approach to predict saturated boiling and superheating of the vapor phase. An arbitrary temperature distribution allows for pressure calculations by considering the expected location of the liquid mass and the peak internal temperature. An enthalpy balance provides the effects of the temperature distribution and the peak pressure condition is easily predicted using the proposed method. This work provides a means to calculate the maximum internal pressure of a sealed container with a condensable fluid without the need for complex multiphase computer modeling.


Sign in / Sign up

Export Citation Format

Share Document