The stability of suspensions of multiwalled carbon nanotubes in organic solvents in the presence of triton X-165

2012 ◽  
Vol 74 (6) ◽  
pp. 663-667 ◽  
Author(s):  
V. A. Gigiberiya ◽  
I. A. Ar’ev ◽  
N. I. Lebovka
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Kodanda Rama Rao Chebattina ◽  
V. Srinivas ◽  
N. Mohan Rao

The aim of the paper is to investigate the effect of size of multiwalled carbon nanotubes (MWCNTs) as additives for dispersion in gear oil to improve the tribological properties. Since long pristine MWCNTs tend to form clusters compromising dispersion stability, they are mildly processed in a ball mill to shorten the length and stabilized with a surfactant before dispersing in lubricant. Investigations are made to assess the effect of ball milling on the size and structure of MWCNTs using electron microscopy and Raman spectroscopy. The long and shortened MWCNTs are dispersed in EP 140 gear oil in 0.5% weight. The stability of the dispersed multiwalled carbon nanotubes is evaluated using light scattering techniques. The antiwear, antifriction, and extreme pressure properties of test oils are evaluated on a four-ball wear tester. It is found that ball milling of MWCNTs has a strong effect on the stability and tribological properties of the lubricant. From Raman spectroscopy, it is found that ball milling time of up to 10 hours did not produce any defects on the surface of MWCNTs. The stability of the lubricant and the antiwear, antifriction, and extreme pressure properties have improved significantly with dispersion shortened MWCNTs. Ball milling for longer periods produces defects on the surface of MWCNTs reducing their advantage as oil additives.


2008 ◽  
Vol 22 (25) ◽  
pp. 2493-2501 ◽  
Author(s):  
HUN-SIK KIM ◽  
MINSUNG KANG ◽  
WON-IL PARK ◽  
DON-YOUNG KIM ◽  
HYOUNG-JOON JIN

Multiwalled carbon nanotubes (MWCNTs) were dispersed in various alcohols such as methanol, ethanol and isopropanol using ultrasonication. In order to disperse the MWCNTs in the alcohols, they were treated using a mixture of H 2 SO 4 and HNO 3 (3 : 1, vol/vol). The concentration of MWCNTs was approximately 0.03 wt.% and they formed a homogeneous dispersion in the alcohol solutions. The functional groups introduced on the surface of the MWCNTs during the acid treatment were characterized by Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy. The dispersibility of the MWCNTs in the alcohols was characterized using atomic force microscopy, scanning electron microscopy and transmission electron microscopy. The stability of the MWCNT dispersions was also measured using a recently developed optical analyzer (Turbiscan).


2014 ◽  
Vol 6 (2) ◽  
pp. 62-68
Author(s):  
Alena Politaeva ◽  
Grigory Yakovlev ◽  
Damir Khazeev

In this paper, the stability of aqueous suspensions of multiwalled carbon nanotubes (MWCNTs) has been studied with physical and chemical methods. The optimum dispersion time of MWCNT suspension in a rotary homogenizer has been found. The dispersion time being increased, the quality of the suspension decreases. The data of the physical and chemical studies has also been confirmed experimentally on gypsum samples. The samples modified with MWCNT suspension of 2-hour dispersion show an increase in flexural strength and compressive strength by 40% and 48%, respectively, in comparison with the control sample, whereas the samples modified with MWCNT suspension of 10-hour dispersion show a decrease in flexural strength and compressive strength. The microstructure of the gypsum samples was studied with a scanning electron microscope.


Author(s):  
Nicholas Hentges ◽  
Gurjap Singh ◽  
Albert Ratner

Abstract Recent studies have shown that the addition of nanomaterials to fuels can improve combustion characteristics. A downside, however, is that these mixtures are unstable and prone to phase separation. Finding stable nanomaterial-fuel mixtures are required to make these mixtures viable for practical use. Current research studied the stability of Renewable jet fuel combined with multiple nanomaterial additives being acetylene black, graphene nanoparticles, and multiwalled carbon nanotubes, at 1.0% w/w ratio. Results were compared with prior research and it was shown that renewable jet fuel had a similar effect on settling as soy biodiesel and the results indicated that the fuel’s bulk viscosity was not a major factor determining the stability of the nanofuel.


Electrochem ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 251-263
Author(s):  
Edna Ferreira Amaral ◽  
Daniela Nunes da Silva ◽  
Maria Cristina Silva ◽  
Arnaldo César Pereira

In this work, an electrochemical sensor (GCE/MWCNT/Fe3O4@SiO2) based on a composite of multiwalled carbon nanotubes (MWCNT) and an Fe3O4@SiO2 (MMN) nanocomposite on a glassy carbon electrode (GCE) was developed for the detection of tetracycline (TC). The composite formed promoted an increased electrochemical signal and the stability of the sensor, combining its individual characteristics such as high electrical conductivity and large surface area. The composite material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Mössbauer spectroscopy, and scanning electron microscope (SEM). The adsorptive stripping differential pulse voltammetry (AdSDPV) promoted better performance for the electrochemical sensor and greater sensitivity for TC detection. Under optimized conditions, the currents increased linearly with TC concentrations from 4.0 to 36 µmol L−1 (0.997) and from 40 to 64 µmol L−1 (0.994) with detection and quantification limits of 1.67 µmol L−1 and 4.0 µmol L−1, respectively. The sensor was applied in the analysis of milk and river water samples, obtaining recovery values ranging from 91–117%.


Sign in / Sign up

Export Citation Format

Share Document