The preparation of the salts of heteropolyacids by tempering a mixture of the solid components

1987 ◽  
Vol 52 (6) ◽  
pp. 1468-1479 ◽  
Author(s):  
Milan Drátovský ◽  
Jiří Mosinger

The method of prolonged tempering of a mixture of the solid components Na4As2O7 + ZO3 + Na2ZO4 (Z = Mo, W) was successfully used to prepare new compounds in the pure state and thermoanalytical analysis yielded the empirical formula, Na24As2Z22O83. The two compounds melt congruently and have a melting point of 597 °C (Z = Mo) and 691 °C (Z = W). To make the determination of the empirical formula more objective, a computation method was developed for treatment of the thermoanalytical data and two computer programs were written.

1963 ◽  
Vol 44 (1) ◽  
pp. 47-66 ◽  
Author(s):  
W. Nocke ◽  
H. Breuer

ABSTRACT A method for the chemical determination of 16-epi-oestriol in the urine of nonpregnant women with a qualitative sensitivity of less than 0.5 μg/24 h is described. The separation of 16-epi-oestriol and oestriol is accomplished by converting 16-epi-oestriol into its acetonide, a reaction which is stereoselective for cis-glycols and therefore not undergone by oestriol as a trans-glycol. Following partition between chloroform and aqueous alkali, the acetonide of 16-epi-oestriol is completely separated with the organic layer whereas oestriol as a strong phenol remains in the alkaline phase. 16-epi-oestriol is chromatographed on alumina as the acetonide and determined as a Kober chromogen. This procedure can easily be incorporated into the method of Brown et al. (1957 b) thus making possible the simultaneous routine assay of oestradiol-17β, oestrone, oestriol and 16-epi-oestriol from one sample of urine. The specificity of the method was established by separation of 16-epi-oestriol from nonpregnancy urine as the acetonide, hydrolysis of the acetonide by phosphoric acid, isolation of the free compound by microsublimation and identification by micro melting point, colour reactions and chromatography. The accuracy of the method is given by a mean recovery of 64% for pure crystalline 16-epi-oestriol when added to hydrolysed urine in 5–10 μg amounts. The precision is given by s = 0.24 μg/24 h. For the duplicate determination of 16-epi-oestriol the qualitative sensitivity is 0.44 μg/24 h, the maximum percentage error being ± 100% The quantitative sensitivity (±25% error) is 1.7 μg/24 h.


Author(s):  
E.A. Derkach , O.I. Guseva

Objectives: to compare the accuracy of equations F.P. Hadlock and computer programs by V.N. Demidov in determining gestational age and fetal weight in the third trimester of gestation. Materials: 328 patients in terms 36–42 weeks of gestation are examined. Ultrasonography was performed in 0–5 days prior to childbirth. Results: it is established that the average mistake in determination of term of pregnancy when using the equation of F.P. Hadlock made 12,5 days, the computer program of V.N. Demidov – 4,4 days (distinction 2,8 times). The mistake within 4 days, when using the equation of F.P. Hadlock has met on average in 23,1 % of observations, the computer program of V.N. Demidov — 65,9 % (difference in 2,9 times). The mistake more than 10 days, took place respectively in 51,7 and 8,2 % (distinction by 6,3 times). At a comparative assessment of size of a mistake in determination of fetal mass it is established that when using the equation of F.P. Hadlock it has averaged 281,0 g, at application of the computer program of V.N. Demidov — 182,5 g (distinction of 54 %). The small mistake in the mass of a fetus which isn't exceeding 200 g at application of the equation of F.P. Hadlock has met in 48,1 % of cases and the computer program of V.N. Demidov — 64,0 % (distinction of 33,1 %). The mistake exceeding 500 g has been stated in 18 % (F.P. Hadlock) and 4,3 % (V.N. Demidov) respectively (distinction 4,2 times). Conclusions: the computer program of V.N. Demidov has high precision in determination of term of a gestation and mass of a fetus in the III pregnancy.


1993 ◽  
Vol 48 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Joseph Grobe ◽  
Duc Le Van ◽  
Gudrun Lange

The course of the reactions o f fluorophosphaalkenes F3CP = C (F)OR [R = Me (1), Et (2)] with methanol or ethanol strongly depends on the experimental conditions. Thus at 70 °C a mixture of the 2-phosphapropionic acid ester F3CP (H )CO2R [R = Me (3), Et (4)] and trifluoromethylphosphane H2PCF3 is formed [molar ratio: 3 or 4 /H2 CF3 ≈1/1]. If the precursors F3CP (H )CO2R [R = Me (3), Et) are used as starting materials, the reaction with ROH under the same conditions affords 3 and 4, respectively, (90 to 95% yield) with only traces of H2PCF 3. In the presence o f iPr2NH these precursors react with R′OH to give the novel trifluoromethylphosphaalkenes F3CP = C (OR )OR [R /R′: Me/Me (6); E t/E t (7); Me/Et (8)]. With Et2NH , 3 undergoes an addition/elimination process yielding the interesting push/pull system Et2N(F)C = P-CO2Me (5). 1 and 2 react with primary amines R′NH2 (R′= tBu, Me) with stereoselective formation of the fairly labile phosphaalkenes F3CP = C(OR)NHR′ [R /R′: Me/tBu (9), Et/tBu(10), Me/Me (11)] with trans-positions for CF3 and NHR′.The new compounds 3 -11 were characterized by spectroscopic investigations (1H , 19F, 31P, 13C NMR ; IR, MS) and determination of M+ or typical fragment ions [M+ -OR ] by high resolution mass spectrometry.


2015 ◽  
Vol 70 (3) ◽  
pp. 191-196 ◽  
Author(s):  
Olaf Reckeweg ◽  
Francis J. DiSalvo

AbstractThe new compounds LiK[C(CN)3]2 and Li[C(CN)3]·½ (H3C)2CO were synthesized and their crystal structures were determined. Li[C(CN)3]·½ (H3C)2CO crystallizes in the orthorhombic space group Ima2 (no. 46) with the cell parameters a=794.97(14), b=1165.1(2) and c=1485.4(3) pm, while LiK[C(CN)3]2 adopts the monoclinic space group P21/c (no. 14) with the cell parameters a=1265.7(2), b=1068.0(2) and c=778.36(12) pm and the angle β=95.775(7)°. Single crystals of K[C(CN)3] were also acquired, and the crystal structure was refined more precisely than before corroborating earlier results.


2012 ◽  
Vol 557-559 ◽  
pp. 2225-2228
Author(s):  
Bing Yu ◽  
Lian Hong Zhang ◽  
Hong Qi Du ◽  
Fu Cong Liu

Large gear is widely used as a key component of heavy machineries. Gear shaping is the most commonly process of large gear manufacturing. For the design of large gear shaper, the determination of its main driving force depends on the empirical formula. However, its result has shown that the main driving force is much larger than what really needs, which produces a lot of waste. A novel analytical method is proposed in this paper. According to this method, the cutting area can be calculated precisely, and the design of main driving force will be more reasonably, it also provides the theoretical foundation for the design of large gear shaper.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 2013 ◽  
Author(s):  
Ricardo Murcia ◽  
Sandra Leal ◽  
Martha Roa ◽  
Edgar Nagles ◽  
Alvaro Muñoz-Castro ◽  
...  

In this work, six complexes (2–7) of Cr(III) and Co(II) transition metals with triazole ligands were synthesized and characterized. In addition, a new ligand, 3,5-bis(1,2,4-triazol-1-ylmethyl)toluene (1), was synthesized and full characterized. The complexes were obtained as air-stable solids and characterized by melting point, electrical conductivity, thermogravimetric analysis, and Raman, infrared and ultraviolet/visible spectroscopy. The analyses and spectral data showed that complexes 3–7 had 1:1 (M:L) stoichiometries and octahedral geometries, while 2 had a 1:2 (M:L) ratio, which was supported by DFT calculations. The complexes and their respective ligands were evaluated against bacterial and fungal strains with clinical relevance. All the complexes showed higher antibacterial and antifungal activities than the free ligands. The complexes were more active against fungi than against bacteria. The activities of the chromium complexes against Candida tropicalis are of great interest, as they showed minimum inhibitory concentration 50 (MIC50) values between 7.8 and 15.6 μg mL−1. Complexes 5 and 6 showed little effect on Vero cells, indicating that they are not cytotoxic. These results can provide an important platform for the design of new compounds with antibacterial and antifungal activities.


2019 ◽  
Vol 70 (11) ◽  
pp. 3793-3801

The paper presents the synthesis, characterization and cytotoxicity assessment of five organic compounds containing 4-(phenylsulfonyl)phenyl fragment in the molecule, namely of three acyclic precursors derived from phenylalanine (from N-acyl-a-amino acids, N-acyl-a-amino acyl chlorides and N-acyl-a-amino ketones class) and of the cyclization products: a 1,3-oxazol-5(4H)-one and, respectively, a 1,3-oxazole substituted in position 5 with the p-tolyl group. The synthesized compounds were characterized by spectral methods (UV-Vis, FT-IR, 1H-NMR, 13C-NMR, and MS) and elemental analysis, which confirmed their structures. For the determination of the purity of the new compounds, the RP-HPLC method was used. In view of the therapeutic potential of the newly synthesized compounds, we evaluated their toxicological profile using the Daphnia magna bioassay. Keywords: N-acyl-a-amino acid, 1,3-oxazol-5(4H)-one, N-acyl-a-amino ketone, 1,3-oxazole, cytotoxic effect


Sign in / Sign up

Export Citation Format

Share Document