Deficiency of sorting nexin 10 prevents bone erosion in collagen-induced mouse arthritis through promoting NFATc1 degradation

2015 ◽  
Vol 75 (6) ◽  
pp. 1211-1218 ◽  
Author(s):  
Chun Zhou ◽  
Yan You ◽  
Weixing Shen ◽  
Yi-Zhun Zhu ◽  
Jing Peng ◽  
...  

ObjectivePeriarticular and subchondral bone erosion in rheumatoid arthritis caused by osteoclast differentiation and activation is a critical index for diagnosis, therapy and monitoring of the disease. Sorting nexin (SNX) 10, a member of the SNX family which functions in regulation of endosomal sorting, has been implicated to play an important clinical role in malignant osteopetrosis. Here we studied the roles and precise mechanisms of SNX10 in the bone destruction of collagen-induced arthritis (CIA) mice.MethodsThe role of SNX10 in bone destruction was evaluated by a CIA mice model which was induced in male SNX10−/− mice and wild type littermates. The mechanism was explored in osteoclasts induced by receptor activator of nuclear factor κB ligand from bone marrow mononuclear cells of wild type and SNX10−/− mice.ResultsSNX10 knockout prevented bone loss and joint destruction in CIA mice with reduced serum levels of TNF-α, interleukin 1β and anticollagen IgG 2α antibody. SNX10 deficiency did not block osteoclastogenesis, but significantly impaired osteoclast maturation and bone-resorption function by disturbing the formation of actin belt. The production of TRAP, CtsK and MMP9 in SNX10−/− osteoclasts was significantly inhibited, and partially restored by SNX10 overexpression. We further demonstrated that the degradation of NFATc1 was accelerated in SNX10−/− osteoclasts causing an inhibition of integrin β3-Src-PYK2 signalling.ConclusionsOur study discloses a crucial role and novel mechanism for SNX10 in osteoclast function, and provides evidence for SNX10 as a promising novel therapeutic target for suppression of immune inflammation and bone erosion in rheumatoid arthritis.

2021 ◽  
Vol 10 (1) ◽  
pp. 48
Author(s):  
Jiah Yeom ◽  
Dong Joon Yim ◽  
Seongho Ma ◽  
Young-Hee Lim

Osteoclast differentiation is crucial for bone absorption, and osteoclasts are involved in bone destruction in rheumatoid arthritis (RA). Dairy Propionibacterium freudenreichii is used as a cheese starter and possesses prebiotic and postbiotic properties. It is known to stimulate the growth of bifidobacteria and produces valuable metabolites, such as vitamin B12 and propionic acid. However, limited information is available on the beneficial effects of P. freudenreichii on human disease. Herein, we aimed to investigate the inhibitory effect of P. freudenreichii MJ2 (MJ2) isolated from raw milk on osteoclast differentiation and evaluate the improvement in RA. The murine macrophage cell line, RAW 264.7, and a collagen-induced arthritis (CIA) mouse model were used to perform in vitro and in vivo studies, respectively. Heat-killed P. freudenreichii MJ2 (hkMJ2)-treated cells significantly inhibited RANKL-induced osteoclast differentiation and TRAP activity. HkMJ2-treated cells exhibited significantly decreased expression of genes and proteins related to RANKL-induced osteoclast differentiation. MJ2 administration decreased the arthritic score in the CIA mouse model. Live and dead MJ2 inhibited bone loss and afforded protection against bone erosion and joint damage in CIA mice. MJ2 decreased the levels of collagen-specific antibodies and inflammatory cytokines and the expression of osteoclast differentiation-related genes and proteins in CIA mice. Interestingly, live and dead MJ2 showed similar RA improvement effects in CIA mice. In conclusion, P. freudenreichii MJ2 inhibited osteoclast differentiation by inhibiting the NF-κB signaling pathway and ameliorated CIA.


2019 ◽  
Vol 6 (1) ◽  
pp. e000331 ◽  
Author(s):  
Ze-Min Lin ◽  
Yu-Ting Liu ◽  
Yan-Sheng Xu ◽  
Xiao-Qian Yang ◽  
Feng-Hua Zhu ◽  
...  

ObjectiveRheumatoid arthritis is an autoimmune disease characterised by inflammation and bone loss, leading to joint destruction and deformity. The cervus and cucumis polypeptide (CCP) injection, one of the traditional Chinese medicine injections combined extracts from deer horn and sweet melon seeds, is widely used to treat arthritis and bone fracture in China. The present study investigated the therapeutic efficacy and mechanism of CCP on pathological immune cells and bone homoeostasis in rodent experimental arthritis.MethodsThe effects of CCP (4 mg/kg and 2 mg/kg) on clinical arthritis symptoms, bone erosion, proinflammatory cytokines and pathological immune cells induced by complete Freund’s adjuvant was evaluated in male Sprague-Dawley rats. The impacts of CCP (2 mg/kg) on joint erythema and swelling, production of pathogenic antibodies and the proportion of inflammatory cells were assessed in collagen-induced arthritis (CIA) in DBA/1J mice. Regulation of osteoclastogenesis by CCP was observed in the murine macrophage-like RAW264.7 cells treated with receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF).ResultsCCP administration significantly prevented disease progression in both adjuvant-induced arthritis (AIA) rats and CIA mice. The therapeutic benefits were accompanied by reduction of paw oedema, reversed bone destruction, decreased pathological changes and osteoclast numbers in joints in AIA rats, as well as attenuated clinical manifestation and autoantibodies production in CIA mice. Meanwhile, in vitro supplemented of CCP concentration dependently inhibited RANKL/M-CSF-induced osteoclast differentiation, without showing cytotoxicity in RAW264.7 cells. Further, the presence of CCP dampened the augmented downstream signalling transduction as well as activation of osteoclast-specific genes and transcription factors induced by RANKL/M-CSF in RAW264.7 cells.ConclusionOur study suggested that the therapeutic effects of CCP in experimental arthritis could be attributed to its intervention on RANKL-induced osteoclastogenesis signalling pathway in osteoclast precursor cells.


2020 ◽  
Vol 6 (44) ◽  
pp. eabd2688 ◽  
Author(s):  
Liam J. O’Neil ◽  
Ana Barrera-Vargas ◽  
Donavon Sandoval-Heglund ◽  
Javier Merayo-Chalico ◽  
Eduardo Aguirre-Aguilar ◽  
...  

Formation of autoantibodies to carbamylated proteins (anti-CarP) is considered detrimental in the prognosis of erosive rheumatoid arthritis (RA). The source of carbamylated antigens and the mechanisms by which anti-CarP antibodies promote bone erosion in RA remain unknown. Here, we find that neutrophil extracellular traps (NETs) externalize carbamylated proteins and that RA subjects develop autoantibodies against carbamylated NET (cNET) antigens that, in turn, correlate with levels of anti-CarP. Transgenic mice expressing the human RA shared epitope (HLADRB1* 04:01) immunized with cNETs develop antibodies to citrullinated and carbamylated proteins. Furthermore, anti–carbamylated histone antibodies correlate with radiographic bone erosion in RA subjects. Moreover, anti–carbamylated histone–immunoglobulin G immune complexes promote osteoclast differentiation and potentiate osteoclast-mediated matrix resorption. These results demonstrate that carbamylated proteins present in NETs enhance pathogenic immune responses and bone destruction, which may explain the association between anti-CarP and erosive arthritis in RA.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 533 ◽  
Author(s):  
Sakae Tanaka

Although remarkable advances have been made in the treatment of rheumatoid arthritis (RA), novel therapeutic options with different mechanisms of action and fewer side effects have been expected. Recent studies have demonstrated that bone-resorbing osteoclasts are critically involved in the bone destruction associated with RA. Denosumab, a human antibody against receptor activator of nuclear factor-kappa B ligand (RANKL), efficiently suppressed the progression of bone erosion in patients with RA by suppressing osteoclast differentiation and activation in several clinical studies, although it had no effect on inflammation or cartilage destruction. Denosumab, in combination with anti-rheumatic drugs, is considered a pivotal therapeutic option for the prevention of bone destruction in RA.


2018 ◽  
Vol 69 (9) ◽  
pp. 2541-2545
Author(s):  
Raluca Barzoi ◽  
Elena Rezus ◽  
Codruta Badescu ◽  
Razan Al Namat ◽  
Manuela Ciocoiu

There is a bidirectional interaction between most immune cells and osteoblasts, osteoclasts and their precursor cells. The receptor activator of nuclear factor-kB ligand (RANKL)/RANK/osteoprotegerin (OPG) system plays an essential role in the formation of osteoblasts, but it also has implications in osteoclast biology and implicitly on the diseases characterized by bone loss. Proinflammatory cytokines existing at synovial level function as direct or indirect stimulators of osteoclast differentiation, but also of its survival or activity, although some cytokines may also play an antiosteocastogenic role. The fate of bone destruction is determined by the balance between osteoclastogenic and antiosteoclastogenic mediators. Our study has shown that the early initiation of the therapy with anti-TNF and anti-IL6 biological agents, in patients with rheumatoid arthritis, inhibits bone destruction, regardless of the anti-inflammatory activity in patients with rheumatoid arthritis.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 645.1-645
Author(s):  
K. Katayama ◽  
K. Yujiro ◽  
T. Okubo ◽  
R. Fukai ◽  
T. Sato ◽  
...  

Background:Many studies have been reported to reduce/discontinue Biologics in the treatment of rheumatoid arthritis (RA). In contrast, study for tapering methotrexate (MTX) has been limited (1,2).Objectives:We prospectively examined whether bone destruction will progress at 48 weeks after tapering or discontinuing MTX (UMIN000028875).Methods:The subjects were RA patients who have maintained low disease activity or lower for 24 weeks or more in DAS28-CRP after MTX administration. Patients having PDUS Grade 2 or 3 per site by bilateral hand ultrasonography (26 area) were excluded in this study owing to risk for joint destruction. The joint destruction was evaluated by the joint X-ray evaluation by modified total Sharp scoring (mTSS) at 1 year after the start of tapering MTX. Evaluation of clinical disease activities, severe adverse events, the continuation rate during MTX tapering were also evaluated. According to tapering response, prognostic factor for good response for tapering, joint destruction was determined. Predictors for successful tapering MTX and progression of bone destruction were determined. Statistical analysis was performed by t-test or Wilcoxon rank sum test using SAS .13.2 software.Results:The subjects were 79 (16 males, 63 females). Age average 60.9 years, disease duration 4 years 4 months, MTX dose 8.43 mg / w, DAS28-CRP 1.52, DMARDs (24.3%), ACPA 192.7 U / ml (70.5%), RF 55.6 IU / ml (65.4%).MTX was tapered from an average of 8.43 mg / w before study to 5.46 mg / w one year later. In the treatment evaluation, DAS28-CRP increased from 1.52 to 1.84. 89.7% of subjects did not progress joint damage. Other disease activities significantly increased (Table 1). The one-year continuation rate was 78.2%. Since tapering effects were varied widely, we divided patients into three groups; Flared group (N=14, initial MTX dose 8.71mg/w, final MTX dose 8.42mg/w), Low response group (N=31, final MTX reduction rate< 50%, initial MTX dose 8.93mg/w, final MTX dose 6.22mg/w), High response group (N=34, final MTX reduction rate≥ 50%, initial MTX dose 8.5mg/w, final MTX dose 3.15mg/w)(Table 2).Higher RF value at baseline and higher MTX dose at 3M, 6M were predictors of whether a subject was in Low response group or High Response group. Higher RF value and mTSS at baseline and higher MTX dose at 6M were predictors whether a subject was in Flared group or High response group. Lower age was predictor of whether a subject was in Flared group or Low responder group. Finally, mean ΔmTSS /y in Flared group (0.36) was not significantly higher than in low response group (0.07) and in high response group (0.01).Table 1Table 2.Predictors for successful tapering MTX and progression of bone destructionConclusion:Patients with MTX-administered low disease activity and finger joint echo PDUS grade 1 satisfy almost no joint destruction even after MTX reduction. For tapering, predictors may be helpful for maintaining patient’s satisfaction.References:[1]Baker KF, Skelton AJ, Lendrem DW et al. Predicting drug-free remission in rheumatoid arthritis: A prospective interventional cohort study. J. Autoimmunity. 2019;105: 102298.[2]Lillegraven S, Sundlisater N, Aga A et al. Tapering of Conventional Synthetic Disease Modifying Anti-Rheumatic Drugs in Rheumatoid Arthritis Patients in Sustained Remission: Results from a Randomized Controlled Trial. American College of Rheumatology. 2019; Abstract L08.Disclosure of Interests:None declared


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4968
Author(s):  
Samuel García-Arellano ◽  
Luis Alexis Hernández-Palma ◽  
Sergio Cerpa-Cruz ◽  
Gabriela Athziri Sánchez-Zuno ◽  
Melva Guadalupe Herrera-Godina ◽  
...  

Rheumatoid arthritis (RA) is an autoimmune inflammatory joint disease with complex pathogenesis associated with cytokine dysregulation. Macrophage migration inhibitory factor (MIF) plays a role in systemic inflammation and joint destruction in RA and could be associated with the secretion of other immune-modulatory cytokines such as IL-25, IL-31, and IL-33. For the above, our main aim was to evaluate the IL-25, IL-31, and IL-33 secretion from recombinant human MIF (rhMIF)-stimulated peripheral blood mononuclear cells (PBMC) of RA patients. The rhMIF and lipopolysaccharide (LPS) plus rhMIF stimuli promote the secretion of IL-25, IL-31, and IL-33 (p < 0.05) from PBMC of RA patients. The study groups, the different stimuli, and the interaction between both showed a statistically significant effect on the secretion of IL-25 (p < 0.05) and IL-31 (p < 0.01). The study of the effect of the RA patient treatments and their interaction with the effect of stimuli did not show an interaction between them. In conclusion, our study generates new evidence for the role of MIF in the secretion of IL-25, IL-31, and IL-33 and its immunomodulatory effect on RA.


2020 ◽  
Vol 21 (11) ◽  
pp. 4145 ◽  
Author(s):  
Takahiko Akagi ◽  
Tomoyuki Mukai ◽  
Takafumi Mito ◽  
Kyoko Kawahara ◽  
Shoko Tsuji ◽  
...  

Angiotensin II (Ang II) is the main effector peptide of the renin-angiotensin system (RAS), which regulates the cardiovascular system. The RAS is reportedly also involved in bone metabolism. The upregulation of RAS components has been shown in arthritic synovial tissues, suggesting the potential involvement of Ang II in arthritis. Accordingly, in the present study, we investigated the role of Ang II in bone erosion and systemic bone loss in arthritis. Ang II was infused by osmotic pumps in tumor necrosis factor-transgenic (TNFtg) mice. Ang II infusion did not significantly affect the severity of clinical and histological inflammation, whereas bone erosion in the inflamed joints was significantly augmented. Ang II administration did not affect the bone mass of the tibia or vertebra. To suppress endogenous Ang II, Ang II type 1 receptor (AT1R)-deficient mice were crossed with TNFtg mice. Genetic deletion of AT1R did not significantly affect inflammation, bone erosion, or systemic bone loss. These results suggest that excessive systemic activation of the RAS can be a risk factor for progressive joint destruction. Our findings indicate an important implication for the pathogenesis of inflammatory bone destruction and for the clinical use of RAS inhibitors in patients with rheumatoid arthritis.


2015 ◽  
Vol 75 (6) ◽  
pp. 983-990 ◽  
Author(s):  
Tsutomu Takeuchi ◽  
Yoshiya Tanaka ◽  
Naoki Ishiguro ◽  
Hisashi Yamanaka ◽  
Toshiyuki Yoneda ◽  
...  

ObjectivesTo evaluate efficacy and safety of three different regimens of denosumab, a fully human monoclonal antibody to receptor activator of nuclear factor kappa B (RANK) ligand (RANKL), for Japanese patients with rheumatoid arthritis (RA).MethodsIn this multicentre, randomised, placebo-controlled phase II study, 350 Japanese patients with RA between 6 months and <5 years, stratified by glucocorticoid use and rheumatoid factor status, were randomly assigned to subcutaneous injections of placebo or denosumab 60 mg every 6 months (Q6M), every 3 months (Q3M) or every 2 months (Q2M). All patients basically continued methotrexate treatment and had a supplement of calcium and vitamin D throughout the study. The primary endpoint was change in the modified Sharp erosion score from baseline to 12 months.ResultsDenosumab significantly inhibited the progression of bone erosion at 12 months compared with the placebo, and the mean changes of the modified Sharp erosion score at 12 months from baseline were 0.99, 0.27 (compared with placebo, p=0.0082), 0.14 (p=0.0036) and 0.09 (p<0.0001) in the placebo, Q6M, Q3M and Q2M, respectively. Secondary endpoint analysis revealed that denosumab also significantly inhibited the increase of the modified total Sharp score compared with the placebo, with no obvious evidence of an effect on joint space narrowing for denosumab. As shown in previous studies, denosumab increased bone mineral density. No apparent difference was observed in the safety profiles of denosumab and placebo.ConclusionsAddition of denosumab to methotrexate has potential as a new therapeutic option for patients with RA with risk factors of joint destruction.Trial registration numberJapicCTI-101263.


2018 ◽  
Vol 77 (10) ◽  
pp. 1490-1497 ◽  
Author(s):  
Antonia Puchner ◽  
Victoria Saferding ◽  
Michael Bonelli ◽  
Yohei Mikami ◽  
Melanie Hofmann ◽  
...  

ObjectivesBone destruction in rheumatoid arthritis is mediated by osteoclasts (OC), which are derived from precursor cells of the myeloid lineage. The role of the two monocyte subsets, classical monocytes (expressing CD115, Ly6C and CCR2) and non-classical monocytes (which are CD115 positive, but low in Ly6C and CCR2), in serving as precursors for OC in arthritis is still elusive.MethodsWe investigated CCR2−/− mice, which lack circulating classical monocytes, crossed into hTNFtg mice for the extent of joint damage. We analysed monocyte subsets in hTNFtg and K/BxN serum transfer arthritis by flow cytometry. We sorted monocyte subsets and analysed their potential to differentiate into OC and their transcriptional response in response to RANKL by RNA sequencing. With these data, we performed a gene ontology enrichment analysis and gene set enrichment analysis.ResultsWe show that in hTNFtg arthritis local bone erosion and OC generation are even enhanced in the absence of CCR2. We further show the numbers of non-classical monocytes in blood are elevated and are significantly correlated with histological signs of joint destruction. Sorted non-classical monocytes display an increased capacity to differentiate into OCs. This is associated with an increased expression of signal transduction components of RANK, most importantly TRAF6, leading to an increased responsiveness to RANKL.ConclusionTherefore, non-classical monocytes are pivotal cells in arthritis tissue damage and a possible target for therapeutically intervention for the prevention of inflammatory joint damage.


Sign in / Sign up

Export Citation Format

Share Document