scholarly journals POS0003 RITUXIMAB THERAPY IN SYSTEMIC LUPUS ERYTHEMATOSUS – TRANSIENT EFFECTS ON AGE ASSOCIATED B-CELLS

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 203.1-204
Author(s):  
F. Faustini ◽  
N. Sippl ◽  
R. Stålesen ◽  
K. Chemin ◽  
I. Gunnarsson ◽  
...  

Background:Immune system’s abnormalities in SLE involve several subsets of the B-cell compartment, including double negative B-cells (DN) and CD11c+CD21- B cells (also referred to as ABC-age associated B cells), which are expanded in the disease. ABC cells are also known to interact with T helper cells, T follicular and peripheral helper cells (1). Rituximab, a chimeric anti- CD20 antibody, depleting B cells, is commonly used off-label as treatment for SLE patients, especially in lupus nephritis. Little is known on the impact of B-cell depletion on such B-cell subsets and on B-T-cell interactions.Objectives:to investigate the effects of rituximab (RTX) on the frequencies of double negative B-cell subsets and CD11c+CD21- ABC cells and as well as T follicular helper (TFH, CXCR5+ PD-1+) and T peripheral helper (TPH, PD-1high) CD4+ T-cell subsets.Methods:15 SLE patients, starting RTX and followed longitudinally up to two years, were analyzed for lymphocyte subsets using multicolor flow cytometry. Cryopreserved PBMC were thawed and stained at the same time together with one buffy coat. Around 1 x 106 PBMC for each panel were labeled and further stained with fluorescent antibodies for B and T-cell markers. For the B-cell panel, PBMC were stained with anti-CD3, CD14, CD16, CD19, IgD, CD27, CD38, CD11c, CD21 and in some samples with anti-CXCR5 antibodies. For the T-cell panel, PBMC were labeled with anti-CD16, CD14, CD19 and CD3, CD4, CD8, PD-1, CCR7, CXCR5, CD45RA antibodies. All patients fulfilled the ACR 1982 classification criteria for SLE. Cellular changes were analyzed in the context of clinical information.Results:in the present cohort, the SLE patients were mainly female (86.6%) and of median age of 36.7 (29.8-49.4) with a disease duration of 6.1(1.6-11.8) years, and active disease with SLEDAI-2K at baseline 12.0 (8.0-16.0). The frequency of age-associated B cells (ABCs; CD27-IgD-CD11c+ CD21-) decreased by 13% (p=0.03) in the first two to four months after rituximab start, while globally the DN (IgD-CD27-) B cells transiently increased by around 3% (p=0.15) at the first follow-up. This increase could not be attributed to the DN1 (CXCR5+CD11c-) or DN2 (CXCR5-CD11c+) subsets but to the CD11c-CXCR5- DN (DN3) B cells (increase= 6.7%, p=0.03). In parallel, T effector cells (CCR7- CD45RA+) and TEMRA (CD45RA+ CCR7-) frequencies increased after first follow up in both CD4+ and CD8+ T cells. The frequency of TFH (CXCR5+ PD-1+) cells did not change after rituximab, however a decrease of PD-1high CD4+ cells was observed in most patients, although not significant, after 2-4 month of treatment. In most patients the frequency of PD-1high CD4+ cells either reduce or stay the same after RTX treatment (reduction= 0.53, p=0.28). After 11-15 months of RTX treatment the frequency of PD-1high CD4+ T cell reduces by a -0.5% in comparison to 2-4 months (p=0.039). The SLEDAI at baseline did not correlate with the frequency of PD-1high CD4+ T cells (r=0.03, p=0.9).Conclusion:the importance of T cell - B cell interactions in SLE pathogenesis was recently strengthened by the identification of the lymphocyte subsets TFH/TPH and ABCs respectively. Here, in the context of rituximab treated SLE, we could detect a reduction in the frequencies of both ABCs and PD-1high T cells after treatment with rituximab, while the DN3 and effector memory T cells frequencies increased. Our data suggests that anti-CD20 mediated B-cell depletion affects both B-cell and T-cell subsets frequencies, and that monitoring these specific cell subsets may be clinically relevant.References:[1]Bocharnikov AV, Keegan J, Wacleche VS, Cao Y, Fonseka CY, Wang G, et al. PD-1hiCXCR5- T peripheral helper cells promote B cell responses in lupus via MAF and IL-21. JCI insight. 2019;4(20)Disclosure of Interests:Francesca Faustini Speakers bureau: More than two years ago and not in relation to any aspect of the present research, Natalie Sippl: None declared, Ragnhild Stålesen: None declared, Karine Chemin: None declared, Iva Gunnarsson: None declared, Vivianne Malmström: None declared.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3521-3521
Author(s):  
Mariagabriella Mariani ◽  
Andrea Cairo ◽  
Roberta Palla ◽  
Luca Andrea Lotta ◽  
Andrea Rovati ◽  
...  

Abstract Abstract 3521 Poster Board III-458 Thrombotic thrombocytopenic purpura (TTP) is a rare, life-threatening disease characterized by thrombocytopenia, microangiopathic haemolytic anemia and widespread microvascular thrombosis, resulting in multiorgan ischemia. Acquired TTP, which accounts for approximately 95% of cases, can be either associated to anti ADAMTS13 autoantibodies or secondary to a number of associated conditions (tumors, organ transplantation, use of drugs, pregnancy). There are several key questions that remain unanswered, including the importance of cellular immunity in immunomediated TTP, and the search for laboratory markers that predict disease relapse, an event that occurs in 20% to 50% of patients who survive the acute initial episode. Since alterations of peripheral B and T cell subsets in patients with autoimmune diseases (i.e. rheumatoid arthritis and systemic lupus erythematous) are well established, the aim of this study was to analyze the role of B and T cells in acquired TTP and during its recurrence. Methods 36 healthy controls and 36 consecutive patients affected by acquired TTP during remission (defined as the maintenance of normalization of clinical and laboratory data for at least 30 days after the last plasma therapy following the resolution of the last acute episode) were characterized by flow cytometry for the quantification of: - different peripheral B cell subsets, using labeled surface markers anti-CD19-PerCP, anti-IgD-PE, anti-IgM-FITC, anti-CD27-APC, anti-CD38-FITC; - different peripheral T cell subsets, using labeled surface markers anti-CD3-FITC, anti-CD4-PE, anti-CD8-APC, anti-CD25-FITC. For Treg cell quantification (only 17 patients were analyzed), anti-CD3-PerCP, anti-CD4-FITC, anti-CD25-PE and the intracellular marker FoxP3 were used. Patients were classified in two subgroups: those who developed at least two episodes of TTP (n=19, with recurrence) and those who experienced a single episode only and no relapse during at least one year of retrospective observational time (n=17). ADAMTS13 activity was measured by residual collagen binding assay (Gerritsen et al, Thromb Haemost 1999). The presence of anti-ADAMTS13 IgG was evaluated by Western blotting and ELISA assays, using recombinant ADAMTS13 protein as antigen and patients' plasma as a source of antibody. The presence of anti-ADAMTS13 IgA, IgM, IgG subclasses (IgG1, 2, 3, 4) were evaluated by ELISA assays. For continuous variables, differences between controls and patients and between patients with or without recurrence were evaluated by the t-test; for discrete variables, by the chi square test. P values smaller than 0.05 were considered statistically significant. Analyses were performed using the SPSS package version 17.0. Results 1) TTP patients had an increased number of CD19+ B cells (mean ± SD 13% ± 5) compared with the control group (10% ± 3, p=0.001). No difference was observed in T cells subsets. 2) The results of the characterization of the two groups of patients (with and without recurrence) are reported in the table. Patients with and without recurrence did not differ either in the amount of Treg FoxP3 or in the presence of IgA, IgM and IgG subclasses. Discussion The increased B cell numbers in acquired TTP indicates an enhanced activation of cellular immunity. Analysis of B cell subsets, particularly of memory B cells, and of T cells CD24+CD25+ during remission might provide information on the likelihood of recurrence in TTP. In conclusion, in recurrent TTP patients the higher amount of B cells might result in persistent autoantibodies production whilst the decreased level of T cells CD4+CD25+ may lead to a decreased inhibition of autoreactive T cells. These findings may explain the higher level of recurrence in these patients. Disclosures: Peyvandi: Archemix Corporation: Consultancy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Asuka Tanaka ◽  
Kentaro Ide ◽  
Yuka Tanaka ◽  
Masahiro Ohira ◽  
Hiroyuki Tahara ◽  
...  

AbstractPretransplant desensitization with rituximab has been applied to preformed donor-specific anti-human leukocyte antigen antibody (DSA)-positive recipients for elimination of preformed DSA. We investigated the impact of pretransplant desensitization with rituximab on anti-donor T cell responses in DSA-positive transplant recipients. To monitor the patients’ immune status, mixed lymphocyte reaction (MLR) assays were performed before and after desensitization with rituximab. Two weeks after rituximab administration, the stimulation index (SI) of anti-donor CD4+ T cells was significantly higher in the DSA-positive recipients than in the DSA-negative recipients. To investigate the mechanisms of anti-donor hyper responses of CD4+ T cells after B cell depletion, highly sensitized mice models were injected with anti-CD20 mAb to eliminate B cells. Consistent with clinical observations, the SI values of anti-donor CD4+ T cells were significantly increased after anti-CD20 mAb injection in the sensitized mice models. Adding B cells isolated from untreated sensitized mice to MLR significantly inhibited the enhancement of anti-donor CD4+ T cell response. The depletion of the CD5+ B cell subset, which exclusively included IL-10-positive cells, from the additive B cells abrogated such inhibitory effects. These findings demonstrate that IL-10+ CD5+ B cells suppress the excessive response of anti-donor CD4+ T cells responses in sensitized recipients.


1995 ◽  
Vol 4 (3) ◽  
pp. 189-197 ◽  
Author(s):  
Farida Bouzahzah ◽  
Alain Bosseloir ◽  
Ernst Heinen ◽  
Léon J. Simar

We have isolated two subtypes of helper T cells from human tonsils: CD4+CD57+cells, mostly located in the germinal center (GC), and CD4+CD57-cells, distributed through the interfollicular areas but also present in the GC. In a functional study, we have compared the capacities of these T-cell subtypes to stimulate B cells in cocultures. In order to block T-cell proliferation while maintaining their activation level, we pretreated isolated T cells with mitomycin C prior to culture in the presence of B cells and added polyclonal activators such as PHA and Con A, combined or not with IL-2. Contrary to CD4+CD57-cells, CD4+CD57+cells did not markedly enhance B-cell proliferation. Even when sIgD-B cells typical of germinal center cells were tested, the CD4 CD57 cells had no significant effect. This is in accordance with the location of these cells: They mainly occupy the light zones of the GC where few B cells divide. Even when added to preactivated, actively proliferating cells, CD4+CD57+cells failed to modulate B-cell multiplication. On the supernatants of B-cell-T-cell cocultures, we examined by the ELISA technique the effect of T cells on Ig synthesis. Contrary to CD57-T cells, whose effect was strong, CD57+T cells weakly stimulated Ig synthesis. More IgM than IgG was generally found. Because CD57 antigen is a typical marker of natural killer cells, we tested the cytolytic activity of tonsillar CD4+CD57+cells on K562 target cells. Unlike NK cells, neither CD4+CD57+nor CD4+CD57-cells exhibit any cytotoxicity. Thus, germinal center CD4+CD57+cells are not cytolytic and do not strongly stimulate either B-cell proliferation or Ig secretion. CD4+CD57-cells, however, enhance B-cell proliferation and differentiation, thus acting like the classical helper cells of the T-dependent areas.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2684-2684
Author(s):  
Nasir Bakshi ◽  
Mansoor Aljabry ◽  
Saad Akhter ◽  
Irfan Maghfoor ◽  
Ayman Mashi

Abstract Abstract 2684 NLPHL accounts for 6.5% of all Hodgkin lymphoma cases in the West. It is characterized by a nodular or a nodular & diffuse proliferation of scattered large atypical CD20+ neoplastic B-cells referred to as lymphocyte predominant (LP) cells and typically associated with small lymphocytes mainly of B-cell type. Patients with NLPHL typically have an indolent clinical course but can frequently relapse. Progression to a higher grade lymphoma, notably T-cell/Histiocyte rich B-cell lymphoma (T/HRBCL) has been described in a relatively small number of cases. Because of its rarity, limited information is available about the role of non-neoplastic lymphocytes in NLPHL. Some studies suggest that NLPHL with T-cell rich background may behave differently than the conventional type with predominance of B-cells within the nodules. The purpose of this study was to evaluate outcomes of differential tumor microenvironment namely B-cell versus T-cell rich in patients with NLPHL. We document the clinicopathologic profiles of 29 patients with biopsy proven NLPHL, consisting of 22 male & 7 female, median age 26 years (range, 13–80 years). All patients had lymphoadenopathy & 2 cases showed extranodal involvement in addition to nodal disease. Two patients had a bulky mass, and three had stage 4 disease at presentation. The pathological diagnoses was reviewed and confirmed by an expert hematopathologist in all 29 cases. The LP cells in all cases had a prototypic immunophenotype of CD20+, CD79a+, PU.1+, Bcl-6+, CD15− CD30− & Fascin−. T/HRBCL was excluded as all cases demonstrated preservation of follicular dendritic meshwork by CD21 staining. The meshwork was expanded in 20 cases & in 9 cases it was partially disrupted evincing an irregular architectural pattern. Epstein-Barr Virus encoded RNA by in situ hybridization was negative in 8/8 cases tested. 27/29 patients received systemic multi-agent chemotherapy consisting of: doxorubicin, bleomycin, vinblastine, and dacarbacin (ABVD), 24 patients; cyclophosphamide, doxorubicin, vincristin, and prednisone (CHOP), 2 patients; Rituximab + CHOP (R-CHOP), 1 patient. 9/29 (31%) cases underwent autologous stem cell transplant. One patient in stage 2A refused therapy and one patient (stage 3A) developed significantly decreased cardiac ejection fraction following initial 2 cycles of ABVD. Both of these cases did not have adequate follow-up information available. Results: Twelve of the 29 cases (42%) were designated as having T-cell rich background population, whereas 17 (58%) were considered as conventional variant with a vast predominance of non-neoplastic small lymphocytes being B-cells. A few of the cases seemed to show admixture of both B-cells & T-cells. Comparing T-cell rich & B-cell rich background NLPHL no significant differences were detected in clinical parameters: age, sex, and stage at presentation, absolute lymphocyte count, LDH & Hb. All 27 (100%) patients in this study responded to first-line treatment: 23 with complete response & 4 with partial response. 13/27 (48%) had relapse/s. Five cases had more than one relapses. No patient died within a clinical follow-up period ranging from 18 to 84 months. When the overall survival (OS) of T-cell rich NLPHL was compared with the conventional variant there was no statistical significance between the two groups (log rank p= 0.1206). However, comparison of relapse rate showed that cases with T-cell rich background had higher relapse rate as well as greater incidence of multiple relapses as compared to B-cell rich type of NLPHL even after adjusting for the type of treatment received (log rank p= 0.003). Moreover, 2/12 (17%) T-cell rich NLPHL cases showed transformation to a high grade lymphoma (both T/HRBCL) at the time of recurrence. These findings suggest that in NLPHL a tumor microenvironment rich in T-cells rather than B-cells is characterized by an unfavorable clinical course although OS appears to be similar. These cases perhaps represent a distinctive clinicopathologic variant within the framework of NLPHL. Lately, the term ‘NLPHL with nodules resembling T/HRBCL’ has been used to express the immunobiological overlap between these two entities. It is possible that such cases could be regarded as “intermediate lymphomas” treading between NLPHL and T/HRLBCL. Further studies using gene array profiling analysis may help clarify the molecular differences between these closely related entities. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yutong Jiang ◽  
Mingcan Yang ◽  
Yanli Zhang ◽  
Yefei Huang ◽  
Jialing Wu ◽  
...  

Background: Anti-IL-17A therapy is generally effectively applied in patients with Ankylosing Spondylitis (AS) to achieve and maintain remission. However, the influence of anti-IL-17A on the composition of the immune system is not apparent. Our prospective study was to explore the changes in immune imbalance regarding T cell, B cell and natural killer (NK) cell subsets after secukinumab treatment in AS patients.Methods: Immune cell distribution of 43 AS patients treated with secukinumab for 12 weeks and 47 healthy controls (HC) were evaluated. Flow cytometry using monoclonal antibodies against 25 surface markers was accomplished to explore the frequencies of lineage subsets. The differences between HC, AS pre-treatment, and post-treatment were compared using the paired Wilcoxon test, Mann-Whitney U test, and ANOVA.Results: AS patients had altered immune cell distribution regarding T cell and B cell subsets. Apart from activated differentiation of CD4+ T cell, CD8+ T cell and B cell, higher levels of cytotoxic T (Tc) two cells and Tc17 cells were noted in AS patients. We confirmed that helper T (Th) one cell became decreased; however, Th17 cells and T follicular helper (Tfh) 17 cells went increased in AS. After 12 weeks of secukinumab therapy, CRP and ASDAS became significantly decreased, and meanwhile, the proportions of Th1 cells, Tfh17 cells and classic switched B cells were changed towards those of HC. A decreased CRP was positively correlated with a decrease in the frequency of naïve CD8+ T cells (p = 0.039) and B cells (p = 0.007) after secukinumab treatment. An elevated level of T cells at baseline was detected in patients who had a good response to secukinumab (p = 0.005).Conclusion: Our study confirmed that AS patients had significant multiple immune cell dysregulation. Anti-IL-17A therapy (Secukinumab) could reverse partial immune cell imbalance.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3111-3111 ◽  
Author(s):  
Seung Y. Chu ◽  
Sung-Hyung Lee ◽  
Rumana Rashid ◽  
Hsing Chen ◽  
Emily W. Chan ◽  
...  

Abstract CD20 is highly expressed on normal and malignant B cells, and is a well-established target of antibody therapeutics for B cell leukemias and lymphomas. However, a limitation of approved anti-CD20 antibodies such as rituximab, ofatumumab, and obinutuzumab is that they are unable to stimulate T cell-mediated killing of CD20+ B cells. To exploit the potent activity intrinsic to T cell immunotherapy while maintaining the favorable dosing regimen of a therapeutic antibody, we have designed novel humanized bispecific antibodies that bind to both CD20+ B cells and CD3+ T cells. Such antibodies act via a mechanism known as "redirected T cell-cytotoxicity" (RTCC), because they stimulate targeted T cell-mediated killing regardless of T cell receptor antigen specificity. Unlike other bispecific formats, these antibodies possess a full Fc domain and spontaneously form stable heterodimers that are readily manufactured. Their Fc domain was also engineered to abolish binding to Fcγ receptors (to reduce the potential for nonselective T cell activation), yet preserve binding to human FcRn (to maintain long serum half-life). We first generated a series of affinity-optimized anti-CD20 × anti-CD3 bispecific antibodies and screened these using RTCC assays in which bispecifics stimulated killing of the CD20+ Ramos B cell line by purified human T cells. From this cell-based screen, we selected two candidates for further study in animal models. The bispecific antibodies XmAb13676 and XmAb13677 have identical T cell-engaging domains with 8 nM affinity for human CD3. XmAb13676 stimulated T cell killing of Ramos cells with an EC50 of ~53 ng/ml (~420 pM), while XmAb13677 (with higher affinity for CD20) had an EC50 of ~2 ng/ml (~16 pM). To assess in vivo half-life, we next dosed mice with 2 mg/kg of XmAb13676 or XmAb13677. In marked contrast to non-Fc domain-containing bispecific antibody formats, XmAb13676 and XmAb13677 had an extended serum half-life in mice of 6.7 and 6.6 days, respectively. Because these bispecifics were optimized for binding to human CD20 and CD3 targets and do not crossreact with mouse antigens, we evaluated efficacy in cynomolgus monkeys. We treated 3 monkeys per group with a single dose of XmAb13676 or XmAb13677 at 0.03, 0.3, or 3 mg/kg. Within 4 hr after dosing, T cells were strongly activated and stimulated depletion of over 97% of circulating CD40+ B cells, with the two 3 mg/kg groups showing greatest depletion. B cells continued to decrease for 24 to 48 hr after dosing, with the high-dose groups remaining at baseline levels for the duration of the study (29 days). CD4+ and CD8+ T cells in the circulation were activated immediately after treatment with XmAb13676 and XmAb13677, and this state was sustained for over 48 hr, as measured by greatly increased levels of the activation markers CD25 and CD69. Bispecific antibodies also induced rapid margination of CD4+ and CD8+ T cells from the circulation, with blood T cell populations returning to baseline from 2 to 7 days after dosing. Notably, CD40+ cells in lymph nodes and in bone marrow were depleted by over 90% at all doses, and at the higher dose levels, these B cell populations had not recovered by 29 days after treatment. Our results demonstrate that bispecific antibodies can recruit and activate T cells to efficiently kill CD20+ B cells not only in the circulation but also in the more resistant reservoir of lymphoid organs. These preclinical data in cynomolgus monkeys provide a rationale for clinical assessment of anti-CD20 × anti-CD3 bispecific antibodies in patients with CD20+ B cell leukemias and lymphomas. Disclosures Chu: Xencor: Employment, Equity Ownership. Lee:Xencor, Inc.: Employment, Equity Ownership. Rashid:Xencor, Inc.: Employment, Equity Ownership. Chen:Xencor, Inc.: Employment, Equity Ownership. Chan:Xencor, Inc.: Employment, Equity Ownership. Phung:Xencor, Inc.: Employment, Equity Ownership. Pong:Xencor, Inc.: Employment, Equity Ownership. Endo:Xencor, Inc.: Employment, Equity Ownership. Miranda:Xencor, Inc.: Employment, Equity Ownership. Bonzon:Xencor, Inc.: Employment, Equity Ownership. Leung:Xencor, Inc.: Employment, Equity Ownership. Muchhal:Xencor, Inc.: Employment, Equity Ownership. Moore:Xencor, Inc.: Employment, Equity Ownership. Bernett:Xencor, Inc.: Employment, Equity Ownership. Szymkowski:Xencor, Inc.: Employment, Equity Ownership. Desjarlais:Xencor, Inc.: Employment, Equity Ownership.


Author(s):  
Yasser Bagheri ◽  
Tannaz Moeini Shad ◽  
shideh namazi ◽  
Gholamreza Azizi ◽  
Ali Hosseini ◽  
...  

Background: Selective IgA deficiency (SIgAD) is the most prevalent primary immunodeficiency with almost unknown etiology. This study aimed to investigate the clinical diagnostic and prognostic values of lymphocytes subsets and function in symptomatic SIgAD patients. Methods: A total of 30 available SIgAD patients from the Iranian registry and 30 age-sex-matched healthy controls were included in the present study. We analyzed B and T cell peripheral subsets and T cell proliferation assay by flow cytometry in SIgAD patients with mild and severe clinical phenotypes. Results: Our results indicated a significant increase in naïve and transitional B cells and a strong decrease in marginal zone-like and switched memory B-cells in SIgAD patients. We found that naïve and central memory CD4+ T cell subsets, as well as Th1, Th2 and regulatory T cells have significantly decreased. On the other hand, there was a significant reduction in central and effector memory CD8+ T cell subsets, whereas proportions of both (CD4+ and CD8+) terminally differentiated effector memory T cells (TEMRA) were significantly elevated in our patients. Although some of T cell subsets in severe SIgAD were similar, decrease in marginal-zone and switched memory B cells and increase in CD21low B cell of severe SIgAD patients were slightly prominent. Moreover, the proliferation activity of CD4+ T cells was strongly impaired in SIgAD patients with a severe phenotype. Conclusion: SIgAD patients have varied cellular and humoral deficiencies. Therefore, T cell and B cell assessment might help in better understanding the heterogeneous pathogenesis and prognosis estimation of the disease. Keywords: Primary immunodeficiency, Selective IgA deficiency, B cell subsets, T cell subsets, flow cytometry, proliferation assay


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 356-356 ◽  
Author(s):  
Jonathan M. Irish ◽  
Faye Y. Hsu ◽  
Jeff P. Sharman ◽  
Roch Houot ◽  
Joshua D. Brody ◽  
...  

Abstract Signal transduction plays a key role in cell survival, and changes to signaling are frequently implicated in tumor initiation and progression. We sought to identify abnormal variation in signaling network activity within primary tumor samples obtained prior to treatment from patients with follicular lymphoma (FL). We previously showed that altered B cell receptor (BCR) signaling distinguishes tumor B cells from the non-malignant host B cells in FL tumors. Here we extend this approach and use flow cytometry to measure 648 signaling events in live lymphoid cells from more than 25 lymphoma specimens and healthy controls. We combined 9 previously identified BCR stimulation conditions with inputs from CD40, interleukin 4, interferons (IFNs), and more than 10 other environmental cues that govern the development and activity of lymphocytes. Fluorescent cell barcoding allowed simultaneous staining and analysis of phospho-protein activation under all 27 stimulation conditions within a single tube. The activation of key phospho-protein nodes throughout lymphocyte signaling networks, including Syk, Erk1/2, Btk, Src family kinases, cCbl, p38, NFkB, Akt, Stat1, Stat3, Stat6, and Stat5, was measured under each of the 27 stimulation conditions. Measurements of phospho-protein responses to stimulation were combined with detection of the Bcl-2 oncogene, B and T cell lineage markers in each cell. This panel allowed us to characterize signaling in the heterogeneous cell subsets found within each patient’s tumor sample. Tumor B cells, host tumor infiltrating T cells, non-malignant B cells were all distinguished by contrasting signaling profiles. In some cases, subsets of tumor B cells with differences in signaling network topology were observed within the tumor B cell population. This result suggests that signaling can distinguish between tumor sub-clones and could be used to measure tumor heterogeneity. As previously reported, little variation in signaling was observed among healthy peripheral blood B and T cell samples from different individuals. Abnormally low host T cell signaling was commonly observed within the tumor infiltrating T cells infiltrating FL tumors. Further analysis of tumor T cell subsets indicated that a high proportion of infiltrating T cells expressed CD4 and FoxP3. Taken together, these results support the hypothesis that FL tumor B cells promote suppressed signaling in the T cells of the patient and may modulate the immune response against the tumor. In FL tumor B cells, BCR and IFN signaling frequently triggered Stat5 phosphorylation, but not Stat1 phosphorylation. These results are consistent with the hypothesis that Stat5 initiates genetic programs that support cancer cell survival and proliferation, whereas Stat1 promotes immunogenicity and cooperates with the p53 tumor suppressor protein. In contrast with healthy B cells, loss of the response to CD40L, altered PKC signaling, and variable responses to BCR crosslinking were all seen in FL tumor B cells. The patterns of abnormal signaling we observed in tumor B cells and tumor infiltrating T cells suggest that measuring the activity of key signaling network nodes can identify targets for therapeutic attention in FL.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2865-2865 ◽  
Author(s):  
James N. Kochenderfer ◽  
Mark E. Dudley ◽  
Maryalice Stetler-Stevenson ◽  
Wyndham H. Wilson ◽  
John E. Janik ◽  
...  

Abstract Abstract 2865 T cells can be genetically modified to express chimeric antigen receptors (CARs) that specifically recognize the B-cell antigen CD19. Adoptive transfer of autologous T cells expressing anti-CD19 CARs is an attractive new approach for treating B-cell malignancies. We have constructed a CAR that consists of the variable regions of a mouse-anti-human-CD19 antibody coupled to the signaling domains of CD28 and CD3-zeta. We have treated 5 patients with 2 doses of 60 mg/kg of cyclophosphamide and 5 doses of 25 mg/m2 of fludarabine followed by infusions of anti-CD19-CAR-transduced T cells and administration of high-dose IL-2. All of the patients received infusions of cells that produced cytokines in a CD19-specific manner. The percentage of the infused cells that expressed the anti-CD19 CAR as measured by flow cytometry ranged from 45% to 65%. The first patient enrolled on our trial has follicular lymphoma. He was treated twice. The patient obtained a partial remission (PR) from his first course of chemotherapy, 0.4×109 anti-CD19-CAR-transduced T cells, and IL-2 (reported in Kochenderfer et al. Blood First Edition); however, he subsequently developed progressive disease, and 40 weeks after his first CAR-transduced T cell infusion he received a second course of chemotherapy followed by 2×109 CAR-transduced T cells and IL-2. The second course of treatment resulted in an additional PR and was not associated with any toxicity that could be attributed to the CAR-transduced T cells. At last follow-up, a small amount residual disease detected only by positron emission tomography remained. In this first patient, the initial treatment course resulted in eradication of blood and bone marrow B-lineage cells for 39 weeks. In contrast to the prolonged eradication of B-lineage cells after the initial treatment course, the number of polyclonal blood B cells normalized 9 weeks after the second CAR-transduced T cell infusion. CAR-transduced T cells were present at a level of 0.1% of total peripheral blood mononuclear cells (PBMCs) one month after the first CAR-transduced T cell infusion. Despite the five-fold higher dose of CAR-transduced T cells administered with the second treatment, CAR-transduced T cells were not detected in the blood one month after the second CAR-transduced T cell infusion. The second patient treated on our protocol had follicular lymphoma and had received extensive prior therapy including autologous stem cell transplantation. After an initially uncomplicated course, this patient developed pneumonia caused by culture-proven influenza A virus and died 18 days after CAR-transduced T cell infusion. Quantitative PCR was used to measure the level of CAR-transduced cells in multiple tissues obtained from this patient at autopsy. CAR-transduced cells were widely distributed with the highest levels in the spleen and bone marrow. The third patient treated on our trial obtained a complete remission of advanced chronic lymphocytic leukemia (CLL) after treatment with chemotherapy, infusion of 2×109 anti-CD19-CAR-transduced T cells, and IL-2. At the time of last follow-up, three months after treatment, adenopathy had resolved, CLL cells were not detected by flow cytometry analysis of the blood and bone marrow, and the number of normal polyclonal B cells in the blood was below normal levels. This patient had a period of fever and hypotension 7 days after cell infusion that was associated with an elevated serum interferon-gamma level of 1532 pg/mL. At the time of the hypotensive episode 7 days after cell infusion, anti-CD19-CAR-transduced cells made up 2.1% of PBMCs. The fourth patient treated on our study obtained a PR of splenic marginal zone lymphoma that continues 2 months after treatment with chemotherapy, 2×109 CAR-transduced T cells, and IL-2. This patient did not have prolonged depletion of normal B cells after treatment, and he did not have any toxicity that could be attributed to the anti-CD19 CAR-transduced T cells. We recently treated a fifth patient who has CLL. Follow-up on this patient is too short to evaluate toxicity or response. In conclusion, we have shown that adoptive transfer of anti-CD19-CAR-transduced T cells with in vivo activity is feasible. The promising results obtained on this trial raise important questions for future research aimed at optimizing therapy with anti-CD19-CAR-transduced T cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4478-4478
Author(s):  
Anushruti Sarvaria ◽  
Ahmad Khoder ◽  
Abdullah Alsuliman ◽  
Claude Chew ◽  
Takuya Sekine ◽  
...  

The immunosuppressive function of IL10 producing regulatory B cells (Bregs) has been shown in several murine models of inflammation and autoimmune disease. However, there is a paucity of data regarding the existence of an equivalent regulatory B cell subset in healthy individuals and their potential role in the pathogenesis of chronic graft-versus-host disease (cGVHD) remains unknown. Here, we examined the functional regulatory properties of peripheral blood (PB)-derived human B cell subsets from healthy individuals. In addition, we carried out studies to explore their role in cGVHD, using B cells from patients following allogeneic stem cell transplantation (HSCT). We first determined whether human IL-10 producing B cells are enriched within any othe previously described human B cell subsets: CD19+IgM+CD27+ IgM memory, CD19+IgM-CD27+ switched memory, CD19+IgM+CD27- naive, and and transitional CD19+CD24hiCD38hi. Following in vitro stimulation with CD40 ligand, the majority of IL-10 producing B cells were found within the CD24hiCD38hi transitional and CD19+IgM+CD27+B cell subsets. We next assessed the regulatory properties of the PB-derived B cell subsets, by sort-purifying IgM memory (CD19+IgM+CD27+), switched memory (CD19+IgM-CD27+), naïve (CD19+IgM+CD27-) and transitional (CD19+CD24hiCD38hi) B cells from healthy controls, and cultured them 1:1 with autologous magnetic-bead purified CD4+ T cells. CD3/CD28 stimulated CD4+ T cells cultured with either CD19+IgM+CD27- naïve or CD19+IgM-CD27+ switched memory B cells proliferated to the same extent and produced equivalent amounts of IFN-γ to cultures containing CD4+ T cells alone. In contrast, culture of CD4+ T cells with IgM memory and transitional B cells significantly suppressed CD4+ T cell proliferation [median percent proliferating CD4+ T cells 52.5%; (33%-75%)] and 51% (25%-63%)], respectively when compared with CD3/CD28 stimulated CD4+ T cells (positive control) [89.5% (75%-92%], p=0.0001. The inhibitory effect of IgM memory and transitional B cells on CD4+ T cell proliferation was cell dose dependent with the highest suppression observed at a ratio of 1:1. These data suggest that human PB transitional and IgM memory B cells are endowed with regulatory function. We next examined if the in vitro suppressive effect of transitional and IgM memory B cells is mediated by regulatory T cells (Tregs). For this purpose, CD4+ T cells were depleted of CD127lo CD25hi CD4+ T cells by magnetic cell purification. B cell subsets were cultured with CD3/CD28 stimulated CD4+ CD25- T cells at a ratio of 1:1. IgM memory and transitional B cells were able to significantly suppress the proliferation and Th1 cytokine response by CD4+ CD25- T cells compared to cultures containing CD4+ CD25-T cells alone, indicating that the suppressive activity of Bregs is independent of Tregs. To further understand the underlying mechanims though which Bregs exert T-cell suppression, we used antibody blockade experiments and showed that this suppressive effect was mediated partially via the provision of IL-10, but not TGF-ß. Using transwell experiments, we further determined that the suppressive function of Bregs is also partly dependent on direct T cell/B cell contact. We next assessed whether the activity of Breg cells might be altered in patients with cGVHD. B cells from patients with cGVHD were refractory to CD40 stimulation and produced less IL-10 when compared to patients without cGVHD post-SCT and healthy controls, [1.02% (0.22-2.26) vs.1.72% (0.8-5.52) vs. 2.16 (1.3- 5.6), p=0.001]. Likewise, the absolute number of IL-10 producing B cells was significantly lower in cGvHD patients compared to patients without cGVHD and healthy controls (p=0.007), supporting both a qualitative and quantitative defect in IL-10 producing B cells in cGvHD. Our combined studies provide important new data defining the phenotype of B cell populations enriched in regulatory B cells in healthy humans and provide evidence for a defect in the activity of such cells in patients with cGVHD post-SCT. In association with previous reports showing defects in Treg cell activity in GVHD, our results suggest the existence of a broad range of deficiencies in immune regulatory cell function in cGvHD patients. * Both Anushruti Sarvaria and Ahmad K contributed equally. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document