scholarly journals POS0398 ADIPONECTIN INDUCES SYNOVIAL ANGIOGENESIS IN RHEUMATOID ARTHRITIS THROUGH METABOLIC REMODELING

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 428.2-428
Author(s):  
L. Wang ◽  
W. Tan ◽  
F. Wang ◽  
M. Zhang

Background:Our team have previously reported that Adiponectin correlates well with synovial inflammation and progressive bone erosion in rheumatoid arthritis (RA). Angiogenesis is another important part, which plays a critical role in the pathogenesis of RA.Objectives:We hypothesized that adiponectin induces synovial angiogenesis in RA.Methods:Single-cell RNA sequencing (scRNA-Seq) was used to screen cellular changes in local knee joint of collagen-induced arthritis (CIA) after intraarticularly injected of adiponectin. Chimera models of synovium-cartilage-NOD/SCID mice, matrigel plug assay and rat aortic ring assay were performed to demonstrate the pro-angiogenesis role of adiponectin. Cellular experiment, including proliferation, migration, apoptosis, tube formation and angiogenesis related gene expression profile, were detected with Human Umbilical Vein Endothelial Cells (HUVEC) and Mice Lung Microvessel Endothelial Cell (MLMEC) after adiponectin stimulation. Seahorse was performed to clear the influence of adiponectin to cell metabolism.Results:The synovium and pannus hyperplasia worse in CIA model after intraarticularly injected of adiponectin, along with more serious synovitis and bone erosion. ScRNA-Seq of synovial tissues separated from CIA reminded that endothelial cell barbarically grows via metabolic remodeling after stimulated with adiponectin. Synovial chimera, matrigel plug and rat aortic ring shows adiponectin accelerates angiogenesis significantly in different background conditions. In vitro, endothelial cell proliferation detecting by RCTA and CCK8, migration by wound healing and transwell, apoptosis by FACS, tube formation and angiogenesis related gene expression profile by PCR-ARRAY were promoted by adiponectin in both HUVEC and MLMEC. Seahorse showed HUVEC made more use of glycolysis after co-cultured with adiponectin, a method of cell energy supply that tumor cells possess called warburg effect, that drives endothelial cell hyperplasia in severe environment.Conclusion:As a classic metabolic regulator, adiponectin exacerbates CIA by promoting angiogenesis through metabolic remodeling. The findings not only provide a novel insight into the pathogenic role of adiponectin, but also reveals a potential therapeutical strategy to attenuate revascularization in RA.Disclosure of Interests:None declared

2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Isabel María Galeano-Otero ◽  
Raquel Del Toro ◽  
Tarik Smani

Angiogenesis is a multistep process that controls endothelial cell (EC) functioning to form new blood vessels from preexisting vascular beds. This process is tightly regulated by pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), which promotes signaling pathways involving the increase in the intracellular Ca2+ concentration ([Ca2+]i). Recent evidence suggests that store-operated Ca2+ entry (SOCE) might play a role in angiogenesis. However, little is known regarding the role of SARAF, SOCE-associated regulatory factor in this process. The aim of this study is to examine the role of SARAF in angiogenesis. In vitro angiogenesis was studied using human umbilical endothelial cells (HUVECs) for tube formation assay and vessel sprouting using rat aortic ring by Matrigel assay supplemented with endothelial cell basal medium enriched with different growth factors (VEGF, FGF, b-EGF, and IGF). HUVECs migration was evaluated by wound healing assay, and HUVECs proliferation using Ki67+ marker. Ex vivo angiogenesis was examined by whole mount mice retina on P6 in neonatal mice injected with increasing concentrations of a SOCE inhibitor, GSK-7975A, on P3, P4, and P5. We observed that SOCE inhibition with GSK-7975A blocks aorta sprouting, as well as HUVEC tube formation and migration. The intraperitoneal injection of GSK-7975A also delays the development of retinal vasculature assessed at postnatal day 6 in mice since it reduces vessel length and the number of junctions while it increases lacunarity. Moreover, we found that knockdown of SARAF using siRNA impairs VEGF-mediated [Ca2+]i increase and HUVEC tube formation, proliferation, and migration. Our data show for the first that SOCE inhibition prevents angiogenesis using different approaches and we provide evidence indicating that SARAF plays a critical role in angiogenesis.


2021 ◽  
Vol 22 (5) ◽  
pp. 2426
Author(s):  
Askhat Myngbay ◽  
Limara Manarbek ◽  
Steve Ludbrook ◽  
Jeannette Kunz

Rheumatoid arthritis (RA) is a chronic autoimmune disease causing inflammation of joints, cartilage destruction and bone erosion. Biomarkers and new drug targets are actively sought and progressed to improve available options for patient treatment. The Collagen Triple Helix Repeat Containing 1 protein (CTHRC1) may have an important role as a biomarker for rheumatoid arthritis, as CTHRC1 protein concentration is significantly elevated in the peripheral blood of rheumatoid arthritis patients compared to osteoarthritis (OA) patients and healthy individuals. CTHRC1 is a secreted glycoprotein that promotes cell migration and has been implicated in arterial tissue-repair processes. Furthermore, high CTHRC1 expression is observed in many types of cancer and is associated with cancer metastasis to the bone and poor patient prognosis. However, the function of CTHRC1 in RA is still largely undefined. The aim of this review is to summarize recent findings on the role of CTHRC1 as a potential biomarker and pathogenic driver of RA progression. We will discuss emerging evidence linking CTHRC1 to the pathogenic behavior of fibroblast-like synoviocytes and to cartilage and bone erosion through modulation of the balance between bone resorption and repair.


2018 ◽  
Vol 5 (1) ◽  
pp. 19-29
Author(s):  
Atsushi Tanabe ◽  
Daisuke Kobayashi ◽  
Koki Maeda ◽  
Masayuki Taguchi ◽  
Hiroeki Sahara

2021 ◽  
Author(s):  
Aijun Zhang ◽  
Youming Lu ◽  
Lei Yuan ◽  
Pengqi Zhang ◽  
Dongdong Zou ◽  
...  

Abstract Blood-brain barrier (BBB) dysfunction is presented during traumatic brain injury (TBI) and is dependent upon the activation of the NLRP3/Caspase-1 inflammasome pathway. MicroRNA (miRNA) was proved to inhibit signaling pathway activation by targeting gene expression and we predicated in the database that miR-29a targets to NLRP3. Herein, this study aims to define the regulating role of miR-29a in NLRP3 expression and NLRP3/Caspase-1 inflammasome activation in TBI-induced BBB dysfunction. Our results indicated that miR-29a-5p alleviates TBI-induced the increased permeability of endothelial cell and BBB via suppressing NLRP3 expression and NLRP3/Caspase-1 inflammasome activation, providing a promising strategy for relieving TBI via inhibiting NLRP3/Caspase-1 inflammasome activation.


Development ◽  
1991 ◽  
Vol 111 (3) ◽  
pp. 779-787 ◽  
Author(s):  
K.A. Jermyn ◽  
J.G. Williams

The ecmA (pDd63) and ecmB (pDd56) genes encode extracellular matrix proteins of the slime sheath and stalk tube of Dictyostelium discoideum. Using fusion genes containing the promoter of one or other gene coupled to an immunologically detectable reporter, we previously identified two classes of prestalk cells in the tip of the migrating slug; a central core of pstB cells, which express the ecmB gene, surrounded by pstA cells, which express the ecmA gene. PstB cells lie at the position where stalk tube formation is initiated at culmination and we show that they act as its founders. As culmination proceeds, pstA cells transform into pstB cells by activating the ecmB gene as they enter the stalk tube. The prespore region of the slug contains a population of cells, termed anterior-like cells (ALC), which have the characteristics of prestalk cells. We show that the ecmA and ecmB genes are expressed at a low level in ALC during slug migration and that their expression in these cells is greatly elevated during culmination. Previous observations have shown that ALC sort to surround the prespore cells during culmination (Sternfeld and David, 1982 Devl Biol. 93, 111–118) and we find just such a distribution for pstB cells. We believe that the ecmB protein plays a structural role in the stalk tube and its presence, as a cradle around the spore head, suggests that it may play a further function, perhaps in ensuring integrity of the spore mass during elevation. If this interpretation is correct, then a primary role of anterior-like cells may be to form these structures at culmination. We previously identified a third class of prestalk cells, pstO cells, which lie behind pstA cells in the slug anterior and which appeared to express neither the ecmA nor the ecmB gene. Using B-galactosidase fusion constructs, which give more sensitive detection of gene expression, we now find that these cells express the ecmA gene but at a much lower level than pstA cells. We also show that expression of the ecmA gene becomes uniformly high throughout the prestalk zone when slugs are allowed to migrate in the light. Overhead light favours culmination and it may be that increased expression of the ecmA gene in the pst ‘O’ region is a preparatory step in the process.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3055-3055
Author(s):  
Thung S. Lai ◽  
Christopher Davies ◽  
Charles Greenberg

Abstract Abstract 3055 Poster Board II-1031 Fibrin deposition triggers an injury response that involves the migration of inflammatory cells, formation of new blood vessels and the synthesis of extracellular matrix (ECM). Tissue transglutaminase (TGM2) is a calcium dependent enzyme that covalently crosslinks a wide variety of ECM proteins producing a protease resistant matrix. TGM2 is secreted by inflammatory and endothelial cells, involved in activating transforming growth factor beta-1 (TGFbeta-1) and expressed during tissue injury. In this study, we investigated how TGM2 modulated fibrin-dependent wound healing and the associated angiogenic response. We used an animal model consisting of fibrin Z-chambers (F-ZC, dual porous plexiglass chambers containing fibrin) implanted into the subcutaneous tissue of rats and harvested subsequently for quantitative assessment of granulation tissue formation (wound healing) and microvessel density (angiogenesis). We found that local administration of recombinant TGM2 into F-ZC resulted in a dose-dependent, 2-fold increase in granulation tissue thickness by day 6 of wound healing (p<0.001), an effect similar in magnitude to 25 ng/ml of TGFbeta1 administered in the F-ZC. The pro-healing effect of TGM2 was associated with a 2-fold increase in microvessel density in granulation tissue at day 6 of wound healing response (p<0.001). As a negative control, inactive recombinant C277A/TGM2 mutant did not exhibit increased wound healing response or proangiogenic effect. The data suggested that TGM2 enhanced the transition from the inflammatory stage of wound healing to proliferation stage. The two areas where TGM2 enhanced wound healing were 1) angiogenesis and 2) deposition of ECM. To investigate TGM2-induced angiogenesis-related gene expression, total RNAs were isolated from control- and TGM2-treated F-ZCs (at Day 6). Biotin-labeled cDNA probes were synthesized, and hybridized to nylon membranes containing angiogenesis-related gene arrays (Superarray, MD). The signals were detected using streptavidin-peroxidase and quantitated. We identified increased expression of VEGF receptors Flk-1 (2-fold), Flt1 and neuropilin (1.4-fold), angiopoietin-1 (2-fold) and ephrin B2 (1.8-fold). There were decreased levels (5-fold) of matrix metalloproteinases (MMPs) and increased TGFbeta-1 receptors (1.5-fold) and connective tissue growth factor (CTGF)(1.4-fold) levels. The gene expression profile suggests that TGM2 promotes angiogenesis and enhances deposition of ECM. We then investigated whether Aspirin (Acetylsalicylic Acid, ASA) a potent anti-inflammatory agent would inhibit TGM2. ASA and another chemical acetylating agent, sulfosuccinimidyl acetate (SNA), were used to investigate whether acetylation would alter the crosslinking activity of TGM2. We found acetylation by either SNA or ASA resulted in a loss of >90% of crosslinking activity. The Lys residues that were critical for inhibition were identified by mass spectrometry as Lys468 and Lys663. Molecular modeling indicates that these Lys residues play an important role in the conformation change that occurs in TGM2 from a closed-to-open shape, i.e. inactive-to-active, transitions. In conclusion, we show that TGM2-fibrin crosslinking accelerates angiogenesis and promotes ECM deposition. This suggests that TGM2-fibrin interactions mediates outside-in signaling events that aides wound healing. Furthermore aspirin can acetylate and inhibit critical residues in TGM2 that regulate TGM-2 function. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document