scholarly journals Bespoke 3D printed eye cover for teen with rhabdomyosarcoma

2021 ◽  
pp. bmjspcare-2021-002900
Author(s):  
Aidan O’Sullivan ◽  
Ed Duffy ◽  
Kevin O’Sullivan ◽  
Una Cronin ◽  
Emma Lyons ◽  
...  

BackgroundWe report a case of using 3D printing to create a bespoke eye cover for an 18-year-old man with left maxillary alveolar rhabdomyosarcoma. Further, the patient had proptosis causing chemosis and subsequent conjunctival abrasions. This had been managed by taping a large dressing around the eye for a number of weeks previously.MethodsA 3D scanner was used to capture the surface topography of the patients face. The data were imported into a CAD package and used as a guide to create a bespoke eye cover. The final design was 3D printed in a biocompatible material for use by the patient.ResultsThe scan, modelling, and printing of the bespoke cover was completed successfully in less than 72 hours.Conclusion3D printing offers a method to create bespoke solutions for patients in palliative care to meet rare and difficult clinical challenges.

2021 ◽  
Author(s):  
◽  
Meraz Parker Potoi

<p>This research explores how Pacific and contemporary cultures cohesively blend through 3D printing to create a new identity for Pacific people. The project seeks to further the development of concerning issues surrounding Identity and diabetes within Pacific communities. Foreign preconceptions about the Pacific are been challenged here to create a new identity about the Pacific from a Pacific perspective. The extraction of these Pacific motifs will be explored through a Design realm, 3D printing, which contribute to the development of a contemporary Pacific.  The project seeks to explore the effects of type 1 diabetes on adolescents. In particular, with the managing and storage of their diabetic equipment’s while outside of home care. Pressures of adolescent years is added when diabetes is present, which can cause physiological disadvantages. Bike riding will be the scenario of choice, where storage kits for bikes are 3D printed. Pacific patterning is encouraged to help with the 3D printing process, the familiarity of Pacific patterning is to inspire my Pacific people in becoming active with diabetes. Participants will be used in this research to gain feedback and further the design, giving them a sense of autonomy through unique storage kits, portraying their identity.  Inspiration is drawn from my heritage, which is explored through my contemporary environment (Design), to portray my identity as a Pacific designer. This is evident throughout my experimentation whereas the incorporation of Pacific patterning and themes influence the final design.</p>


Author(s):  
Marjeta Čuk ◽  
◽  
Matejka Bizjak ◽  
Deja Muck ◽  
Tanja Nuša Kočevar ◽  
...  

3D printing is used to produce individual objects or to print on different substrates to produce multi-component products. In the textile industry, we encounter various 3D printing technologies in fashion design, functional apparel manufacturing (protective, military, sports, etc.), including wearable electronics, where textile material is functionalized. 3D printing enables the personalization of the product, which in the apparel industry can be transformed into the production of clothing or parts of clothing or custom accessories. Additive technology allows a more rational use of the material than traditional technologies. In the textile industry we meet different uses of it, one is the printing of flexible structures based on rigid materials, another is the printing with flexible materials and the third is the printing directly on textile substrate. All rigid, hard and soft or flexible materials can be integrated into the final design using 3D printing directly on the textile substrate. We speak of so-called multi-material objects and systems, which have many advantages, mainly in the increasing customization and functionalization of textiles or clothing. The article gives a broader overview of 3D printing on textiles and focuses mainly on the influence of different parameters of printing and woven fabric properties on the adhesion of 3D printed objects on the textile substrate. In our research we investigated the influence of twill weave and its derivate as well as different weft densities of the woven fabric on the adhesion of printed objects on textile substrate. Therefore, five samples of twill polyester/cotton fabrics were woven and their physical properties measured for this research. 3D objects were printed on textile substrates using the extrusion based additive manufacturing technique with polylactic acid (PLA) filament. Preliminary tests were carried out to define printing parameters and different methods of attaching the fabric to a printing bed were tested. T - Peel adhesion tests were performed on the Instron dynamometer to measure the adhesion between 3D printed objects and textile substrates.


2021 ◽  
Author(s):  
◽  
Meraz Parker Potoi

<p>This research explores how Pacific and contemporary cultures cohesively blend through 3D printing to create a new identity for Pacific people. The project seeks to further the development of concerning issues surrounding Identity and diabetes within Pacific communities. Foreign preconceptions about the Pacific are been challenged here to create a new identity about the Pacific from a Pacific perspective. The extraction of these Pacific motifs will be explored through a Design realm, 3D printing, which contribute to the development of a contemporary Pacific.  The project seeks to explore the effects of type 1 diabetes on adolescents. In particular, with the managing and storage of their diabetic equipment’s while outside of home care. Pressures of adolescent years is added when diabetes is present, which can cause physiological disadvantages. Bike riding will be the scenario of choice, where storage kits for bikes are 3D printed. Pacific patterning is encouraged to help with the 3D printing process, the familiarity of Pacific patterning is to inspire my Pacific people in becoming active with diabetes. Participants will be used in this research to gain feedback and further the design, giving them a sense of autonomy through unique storage kits, portraying their identity.  Inspiration is drawn from my heritage, which is explored through my contemporary environment (Design), to portray my identity as a Pacific designer. This is evident throughout my experimentation whereas the incorporation of Pacific patterning and themes influence the final design.</p>


2020 ◽  
Vol 22 (1) ◽  
pp. 113-118
Author(s):  
V V Khominets ◽  
S A Peleshok ◽  
D A Volov ◽  
M V Titova ◽  
M I Eliseeva ◽  
...  

In the last decade, the range of applications of three-dimensional printing (3D printing) in surgery has been expanding. In traumatology, orthopedics and rehabilitation of injuries of the upper limbs, there is growing interest in creating splints and orthoses that can take into account the individual anatomical features of the human body. Traditional orthoses and splints are not always convenient and can lead to undesirable consequences such as pain, swelling, pressure, or even lack of therapeutic effect. The prospects of 3D printing technology in medicine from the beginning of its mass introduction, the features of modeling, manufacturing and application of means for immobilization of injuries and diseases of the upper extremities according to domestic and foreign publications over the past 5 years are considered. The data on the functionality of 3D-printed tire structures and orthoses used to immobilize the upper limb are analyzed in comparison with traditional methods of fixation. Three-dimensional images of patients with injuries obtained using computed tomography, magnetic resonance imaging or using a 3D scanner can be used to create virtual 3D models of the forearm, wrist, fingers of the patient, and 3D printing with these anatomical models allows you to create personalized tires and orthoses. Thanks to an individual approach and the use of various solutions, three-dimensional printing can be widely used in traumatology and orthopedics. As a result of this approach, it becomes possible to implement and effectively use a variety of solutions that will find support in healthcare.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


2020 ◽  
Vol 16 ◽  
Author(s):  
Wei Liu ◽  
Shifeng Liu ◽  
Yunzhe Li ◽  
Peng Zhou ◽  
Qian ma

Abstract:: Surgery to repair damaged tissue, which is caused by disease or trauma, is being carried out all the time, and a desirable treatment is compelling need to regenerate damaged tissues to further improve the quality of human health. Therefore, more and more research focus on exploring the most suitable bionic design to enrich available treatment methods. 3D-printing, as an advanced materials processing approach, holds promising potential to create prototypes with complex constructs that could reproduce primitive tissues and organs as much as possible or provide appropriate cell-material interfaces. In a sense, 3D printing promises to bridge between tissue engineering and bionic design, which can provide an unprecedented personalized recapitulation with biomimetic function under the precise control of the composition and spatial distribution of cells and biomaterials. This article describes recent progress in 3D bionic design and the potential application prospect of 3D printing regenerative medicine including 3D printing biomimetic scaffolds and 3D cell printing in tissue engineering.


Author(s):  
Juan Sebastian Cuellar ◽  
Dick Plettenburg ◽  
Amir A Zadpoor ◽  
Paul Breedveld ◽  
Gerwin Smit

Various upper-limb prostheses have been designed for 3D printing but only a few of them are based on bio-inspired design principles and many anatomical details are not typically incorporated even though 3D printing offers advantages that facilitate the application of such design principles. We therefore aimed to apply a bio-inspired approach to the design and fabrication of articulated fingers for a new type of 3D printed hand prosthesis that is body-powered and complies with basic user requirements. We first studied the biological structure of human fingers and their movement control mechanisms in order to devise the transmission and actuation system. A number of working principles were established and various simplifications were made to fabricate the hand prosthesis using a fused deposition modelling (FDM) 3D printer with dual material extrusion. We then evaluated the mechanical performance of the prosthetic device by measuring its ability to exert pinch forces and the energy dissipated during each operational cycle. We fabricated our prototypes using three polymeric materials including PLA, TPU, and Nylon. The total weight of the prosthesis was 92 g with a total material cost of 12 US dollars. The energy dissipated during each cycle was 0.380 Nm with a pinch force of ≈16 N corresponding to an input force of 100 N. The hand is actuated by a conventional pulling cable used in BP prostheses. It is connected to a shoulder strap at one end and to the coupling of the whiffle tree mechanism at the other end. The whiffle tree mechanism distributes the force to the four tendons, which bend all fingers simultaneously when pulled. The design described in this manuscript demonstrates several bio-inspired design features and is capable of performing different grasping patterns due to the adaptive grasping provided by the articulated fingers. The pinch force obtained is superior to other fully 3D printed body-powered hand prostheses, but still below that of conventional body powered hand prostheses. We present a 3D printed bio-inspired prosthetic hand that is body-powered and includes all of the following characteristics: adaptive grasping, articulated fingers, and minimized post-printing assembly. Additionally, the low cost and low weight make this prosthetic hand a worthy option mainly in locations where state-of-the-art prosthetic workshops are absent.


2019 ◽  
Vol 24 (2) ◽  
pp. 254-270 ◽  
Author(s):  
Luke Heemsbergen ◽  
Angela Daly ◽  
Jiajie Lu ◽  
Thomas Birtchnell

This article outlines preliminary findings from a futures forecasting exercise where participants in Shenzhen and Singapore considered the socio-technological construction of 3D printing in terms of work and social change. We offered participants ideal political-economic futures across local–global knowledge and capital–commons dimensions, and then had them backcast the contextual waypoints across markets, culture, policy, law and technology dimensions that help guide towards each future. Their discussion identified various contextually sensitive points, but also tended to dismiss the farthest reaches of each proposed ideal, often reverting to familiar contextual signifiers. Here, we offer discussion on how participants saw culture and industry shaping futures for pertinent political economic concerns in the twenty-first century.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 125
Author(s):  
Martino Colonna ◽  
Benno Zingerle ◽  
Maria Federica Parisi ◽  
Claudio Gioia ◽  
Alessandro Speranzoni ◽  
...  

The optimization of sport equipment parts requires considerable time and high costs due to the high complexity of the development process. For this reason, we have developed a novel approach to decrease the cost and time for the optimization of the design, which consists of producing a first prototype by 3D printing, applying the forces that normally acts during the sport activity using a test bench, and then measuring the local deformations using 3D digital image correlation (DIC). The design parameters are then modified by topological optimization and then DIC is performed again on the new 3D-printed modified part. The DIC analysis of 3D-printed parts has shown a good agreement with that of the injection-molded ones. The deformation measured with DIC are also well correlated with those provided by finite element method (FEM) analysis, and therefore DIC analysis proves to be a powerful tool to validate FEM models.


Sign in / Sign up

Export Citation Format

Share Document