scholarly journals ROLE OF ADAM-12/SYNDECAN-4 SIGNALLING PATHWAY IN VENTRICULAR REMODELLING IN RATS WITH ALCOHOLIC CARDIOMYOPATHY

Heart ◽  
2012 ◽  
Vol 98 (Suppl 2) ◽  
pp. E66.3-E67
Author(s):  
Jianqiang Li ◽  
Weimin Li ◽  
Yue Li ◽  
Jingyi Xue ◽  
Jiyi Zhao ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diana Prieto-Peña ◽  
Sara Remuzgo-Martínez ◽  
Fernanda Genre ◽  
Verónica Pulito-Cueto ◽  
Belén Atienza-Mateo ◽  
...  

AbstractCytokines signalling pathway genes are crucial factors of the genetic network underlying the pathogenesis of Immunoglobulin-A vasculitis (IgAV), an inflammatory vascular condition. An influence of the interleukin (IL)33- IL1 receptor like (IL1RL)1 signalling pathway on the increased risk of several immune-mediated diseases has been described. Accordingly, we assessed whether the IL33-IL1RL1 pathway represents a novel genetic risk factor for IgAV. Three tag polymorphisms within IL33 (rs3939286, rs7025417 and rs7044343) and three within IL1RL1 (rs2310173, rs13015714 and rs2058660), that also were previously associated with several inflammatory diseases, were genotyped in 380 Caucasian IgAV patients and 845 matched healthy controls. No genotypes or alleles differences were observed between IgAV patients and controls when IL33 and IL1RL1 variants were analysed independently. Likewise, no statistically significant differences were found in IL33 or IL1RL1 genotype and allele frequencies when IgAV patients were stratified according to the age at disease onset or to the presence/absence of gastrointestinal (GI) or renal manifestations. Similar results were disclosed when IL33 and IL1RL1 haplotypes were compared between IgAV patients and controls and between IgAV patients stratified according to the clinical characteristics mentioned above. Our results suggest that the IL33-IL1RL1 signalling pathway does not contribute to the genetic network underlying IgAV.


2021 ◽  
Author(s):  
Marlena Brzozowa-Zasada

Summary Background It is generally accepted that angiogenesis is a complex and tightly regulated process characterized by the growth of blood vessels from existing vasculature. Activation of the Notch signalling pathway affects multiple aspects of vascular development. One of the components of the Notch signalling pathway, Delta-like ligand 4 (DLL4), has recently appeared as a critical regulator of tumour angiogenesis and thus as a promising therapeutic target. Methods This review article includes available data from peer-reviewed publications associated with the role of DLL4 in cancer angiogenesis. Searches were performed in PubMed, EMBASE, Google Scholar and Web of Science using the terms “tumour angiogenesis”, “DLL4”, “Notch signalling” and “anti-cancer therapy”. Results The survival curves of cancer patients revealed that the patients with high DLL4 expression levels had significantly shorter survival times than the patients with low DLL4 expression. Moreover, a positive correlation was also identified between DLL4 and VEGF receptorsʼ expression levels. It seems that inhibition of DLL4 may exert potent growth inhibitory effects on some tumours resistant to anti-VEGF therapies. A great number of blocking agents of DLL4/Notch signalling including anti-DLL4 antibodies, DNA vaccination, Notch antibodies and gamma-secretase inhibitors have been studied in preclinical tumour models. Conclusion DLL4 seems to be a promising target in anti-cancer therapy. Nevertheless, the careful evaluation of adverse effects on normal physiological processes in relation to therapeutic doses of anti-DLL4 drugs will be significant for advancement of DLL4 blocking agents in clinical oncology.


EMBO Reports ◽  
2008 ◽  
Vol 9 (4) ◽  
pp. 330-336 ◽  
Author(s):  
Reid A Aikin ◽  
Katie L Ayers ◽  
Pascal P Thérond

2017 ◽  
Vol 117 (05) ◽  
pp. 911-922 ◽  
Author(s):  
Yongwhi Park ◽  
Udaya Tantry ◽  
Jin-Sin Koh ◽  
Jong-Hwa Ahn ◽  
Min Kang ◽  
...  

SummaryThe role of platelet-leukocyte interaction in the infarct myocardium still remains unveiled. We aimed to determine the linkage of platelet activation to post-infarct left ventricular remodelling (LVR) process. REMODELING was a prospective, observational, cohort trial including patients (n = 150) with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention. Patients were given aspirin plus clopidogrel therapy (600 mg loading and 75 mg daily). Platelet reactivity (PRU: P2Y12 Reaction Units) was assessed with VerifyNow P2Y12 assay on admission. Transthoracic echocardiography was performed on admission and at one-month follow-up. The primary endpoint was the incidence of LVR according to PRU-based quartile distribution. LVR was defined as a relative ≥ 20 % increase in LV end-diastolic volume (LVEDV) between measurements. Adverse LVR was observed in 36 patients (24.0 %). According to PRU quartile, LVR rate was 10.8 % in the first, 23.1 % in the second, 27.0 % in the third, and 35.1 % in the fourth (p = 0.015): the optimal cut-off of PRU was ≥ 248 (area under curve: 0.643; 95 % confidence interval: 0.543 to 0.744; p = 0.010). LVR rate also increased proportionally according to the level of high sensitivity-C reactive protein (hs-CRP) (p = 0.012). In multivariate analysis, the combination of PRU (≥ 248) and hs-CRP (≥ 1.4 mg/l) significantly increased the predictive value for LVR occurrence by about 21-fold. In conclusion, enhanced levels of platelet activation and inflammation determined the incidence of adverse LVR after STEMI. Combining the measurements of these risk factors increased risk discrimination of LVR. The role of intensified antiplatelet or anti-inflammatory therapy in post-infarct LVR process deserves further study.


2016 ◽  
Vol 84 (5) ◽  
pp. 290-301 ◽  
Author(s):  
Marcelina Koćwin ◽  
Mateusz Jonakowski ◽  
Marcelina Przemęcka ◽  
Jan Zioło ◽  
Michał Panek ◽  
...  

Author(s):  
Gemma Sutton ◽  
Robert N. Kelsh ◽  
Steffen Scholpp

The neural crest (NC) is a multipotent cell population in vertebrate embryos with extraordinary migratory capacity. The NC is crucial for vertebrate development and forms a myriad of cell derivatives throughout the body, including pigment cells, neuronal cells of the peripheral nervous system, cardiomyocytes and skeletogenic cells in craniofacial tissue. NC induction occurs at the end of gastrulation when the multipotent population of NC progenitors emerges in the ectodermal germ layer in the neural plate border region. In the process of NC fate specification, fate-specific markers are expressed in multipotent progenitors, which subsequently adopt a specific fate. Thus, NC cells delaminate from the neural plate border and migrate extensively throughout the embryo until they differentiate into various cell derivatives. Multiple signalling pathways regulate the processes of NC induction and specification. This review explores the ongoing role of the Wnt/β-catenin signalling pathway during NC development, focusing on research undertaken in the Teleost model organism, zebrafish (Danio rerio). We discuss the function of the Wnt/β-catenin signalling pathway in inducing the NC within the neural plate border and the specification of melanocytes from the NC. The current understanding of NC development suggests a continual role of Wnt/β-catenin signalling in activating and maintaining the gene regulatory network during NC induction and pigment cell specification. We relate this to emerging models and hypotheses on NC fate restriction. Finally, we highlight the ongoing challenges facing NC research, current gaps in knowledge, and this field’s potential future directions.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhuo Xie ◽  
Mudan Zhang ◽  
Gaoshi Zhou ◽  
Lihui Lin ◽  
Jing Han ◽  
...  

AbstractThe Hedgehog (Hh) signalling pathway plays a critical role in the growth and patterning during embryonic development and maintenance of adult tissue homeostasis. Emerging data indicate that Hh signalling is implicated in the pathogenesis of inflammatory bowel disease (IBD). Current therapeutic treatments for IBD require optimisation, and novel effective drugs are warranted. Targeting the Hh signalling pathway may pave the way for successful IBD treatment. In this review, we introduce the molecular mechanisms underlying the Hh signalling pathway and its role in maintaining intestinal homeostasis. Then, we present interactions between the Hh signalling and other pathways involved in IBD and colitis-associated colorectal cancer (CAC), such as the Wnt and nuclear factor-kappa B (NF-κB) pathways. Furthermore, we summarise the latest research on Hh signalling associated with the occurrence and progression of IBD and CAC. Finally, we discuss the future directions for research on the role of Hh signalling in IBD pathogenesis and provide viewpoints on novel treatment options for IBD by targeting Hh signalling. An in-depth understanding of the complex role of Hh signalling in IBD pathogenesis will contribute to the development of new effective therapies for IBD patients.


Sign in / Sign up

Export Citation Format

Share Document