Energy availability and nutrition during a Special Force Qualification Course (Q-Course)

2018 ◽  
Vol 165 (5) ◽  
pp. 325-329 ◽  
Author(s):  
Patrick Mullie ◽  
P Clarys ◽  
W De Bry ◽  
P Geeraerts

IntroductionThe Special Forces (SF) are an elite military group usually engaged in physically demanding field operations, resulting among others in high daily energy requirements. Optimising energy supply and nutritional requirements is therefore mandatory for success. The aim of this study was to estimate energy availability and nutrition during a Qualification Course (Q-Course) for Belgian SF.Methods21 participants recorded all foods and beverages consumed during four days in a structured food diary. Energy expenditure was measured with an accelerometer and fat mass measured with quadripolar impedance. Energy availability was calculated by the following formula: (energy intake by foods and beverages − energy expenditure for physical activity)/kg FFM/day (FFM, fat-free mass).ResultsThe mean (SD) total energy expenditure was 4926 kcal/day (238), with a minimum of 4645 kcal/day and a maximum of 5472 kcal/day. The mean (SD) total energy consumption was 4186 kcal/day (842), giving an energy balance ranging from −2005 kcal/day to 1113 kcal/day. The mean (SD) energy availability was 17 kcal/kg FFM/day, with a minimum of 1 kcal/kg FFM/day and a maximum of 44 kcal/kg FFM/day. The mean (SD) intake of carbohydrates was 6.8 g/kg body weight/day (1.5).ConclusionsDuring this studied Q-Course, energy intake was not optimal as demonstrated by an overall negative energy balance and low energy availability. High interindividual variations in energy intake were found, highlighting the importance of providing SF members nutritional education.

2021 ◽  
Author(s):  
Patrick Mullie ◽  
Pieter Maes ◽  
Laurens van Veelen ◽  
Damien Van Tiggelen ◽  
Peter Clarys

ABSTRACT Introduction Adequate energy supply is a prerequisite for optimal performances and recovery. The aims of the present study were to estimate energy balance and energy availability during a selection course for Belgian paratroopers. Methods Energy expenditure by physical activity was measured with accelerometer (ActiGraph GT3X+, ActiGraph LLC, Pensacola, FL, USA) and rest metabolic rate in Cal.d−1 with Tinsley et al.’s equation based on fat-free mass = 25.9 × fat-free mass in kg + 284. Participants had only access to the French individual combat rations of 3,600 Cal.d−1, and body fat mass was measured with quadripolar impedance (Omron BF508, Omron, Osaka, Japan). Energy availability was calculated by the formula: ([energy intake in foods and beverages] − [energy expenditure physical activity])/kg FFM−1.d−1, with FFM = fat-free mass. Results Mean (SD) age of the 35 participants was 25.1 (4.18) years, and mean (SD) percentage fat mass was 12.0% (3.82). Mean (SD) total energy expenditure, i.e., the sum of rest metabolic rate, dietary-induced thermogenesis, and physical activity, was 5,262 Cal.d−1 (621.2), with percentile 25 at 4,791 Cal.d−1 and percentile 75 at 5,647 Cal.d−1, a difference of 856 Cal.d−1. Mean daily energy intake was 3,600 Cal.d−1, giving a negative energy balance of 1,662 (621.2) Cal.d−1. Mean energy availability was 9.3 Cal.kg FFM−1.d−1. Eleven of the 35 participants performed with a negative energy balance of 2,000 Cal.d−1, and only five participants out of 35 participants performed at a less than 1,000 Cal.d−1 negative energy balance level. Conclusions Energy intake is not optimal as indicated by the negative energy balance and the low energy availability, which means that the participants to this selection course had to perform in suboptimal conditions.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Alice Rosi ◽  
Cinzia Franchini ◽  
Francesca Scazzina

AbstractSpecific nutritional requirements should be cover during childhood to ensure proper growth. The daily energy need is defined as the number of calories necessary to satisfy the total energy expenditure in a healthy and active organism. Since children are more inclined to be physically active during summer, their energy expenditure may vary during school days respect to summer days and a proper energy intake should be planned during both periods.The primary aim of this study was to evaluate the energy balance during school days and summer camp days in primary school children living in the city of Parma (Italy), attending the Giocampus programme.Participants were asked to complete a 3-day weighed food diary and to wear an activity tracker for the same 3 consecutive days twice: within a school week and a summer camp week. Height and body weight were measured at the beginning of each assessment week and BMI was calculated to define the weight status through the IOTF gender- and age-related cut-offs for children BMI. The mean energy balance was estimated as the difference between the mean total energy expenditure (calculated multiplying the daily physical activity level by the basal metabolic rate from the Schofield's predictive equation) and the mean daily energy intakes (obtained through the Italian food database of the European Institute of Oncology).Fifty-five children (49% F, 51% M, 8–10 y) correctly completed the study. In both periods, the mean BMI corresponded to normal weight status, without significant differences between genders. Energy intake did not change significantly between the assessment periods or between sexes. As expected, the minutes of inactivity decreased during the summer camp period. Moreover, males were more active than females, but the increase in the total energy expenditure from school to summer camp, related to the increased physical activity, was significant in both sexes. Energy balance was negative in both assessment periods and it changed significantly from school to summer camp days, decreasing in both sexes but being more negative for boys than for girls.Our results underline the importance of providing children with meals nutritionally adequate and suggest that the energy content of children's meals should be increased during particular conditions, like a summer camp, and continuously monitored to assure an adequate energy intake to cover the energy requirements during both school and summer camp days.


Author(s):  
Rousset S ◽  
◽  
Médard S ◽  
Fleury G ◽  
Fardet A ◽  
...  

The evaluation of food intake based on various assessment methods is critical and underreporting is frequent. The aim of the study was to develop an indirect statistical method of the total energy intake estimation based on gender, weight and the number of portions. Energy intake prediction was developed and evaluated for validity using energy expenditure measurements given by the WellBeNet app. A total of 190 volunteers with various BMIs were recruited and assigned either in the train or the test sample. The mean energy provided by a portion was evaluated by linear regression models from the train sample. The absolute values of the error between the energy intake estimation and the energy expenditure measurement were calculated for each volunteer, by subgroup and for the whole group. The performance of the models was determined using the validation dataset. As the number of portions is the only variable used in the model, the error was 30.7% and 26.5% in the train and test sample. After adding body weight in the model, the error in absolute value decreased to 8.8% and 10.8% for the normal-weight women and men, and 11.7% and 12.8% for the overweight female and male volunteers, respectively. The findings of this study indicate that a statistical approach and knowledge of the usual number of portions and body weight is effective and sufficient to obtain a precise evaluation of energy intake (about 10% of error) after a simple and brief enquiry.


2017 ◽  
Vol 7 (1) ◽  
pp. 31-38 ◽  
Author(s):  
D. Rossiou ◽  
S. Papadopoulou ◽  
I. Pagkalos ◽  
A. Kokkinopoulou ◽  
D. Petridis ◽  
...  

Purpose: To evaluate of the energy expenditure in 3 types of dance classes (ballet, Jazz, and contemporary), as well as of the daily energy balance depending on dance type. Materials and methods: 40 females attending dance classes with a median age of 21.0 (19.0-25.0) and 10 males with a median age of 27.0 (20.0-28.0) participated in this study. The energy cost of each dance class was measured using the BodyMedia SenseWear Sensor and total daily energy expenditure was evaluated using a 3-day recording of physical activity. The dietary intake was evaluated with a 3-day food diary recording. Statistical analysis was performed using the SPSS software. Results: Median energy expenditure varied from 306 (277-328) Kcals/class for contemporary dance to 327 (290-355) Kcals/class for ballet and 369 (333-394) Kcals/class for jazz for females with significant differences between contemporary and jazz classes. For males, energy expenditure was 508 (447-589) Kcals/class and 564 (538-593) Kcals/class for ballet and jazz classes, respectively. Females had lower values for all anthropometric measurements, energy intake, macronutrient intakes, and energy expenditure, compared with males. The anthropometric characteristics did not differ between dance types. Both female and male dance students were in a negative energy balance. Conclusions: The use of sensors such as BodyMedia SenseWear together with keeping daily diaries make measurement of physical activity in dancing reliable and accurate. Exercise expenditure differs across types of dance in females but not in males. Both sexes had inadequate energy and carbohydrate intakes.


1999 ◽  
Vol 2 (3a) ◽  
pp. 335-339 ◽  
Author(s):  
Marleen A. Van Baak

AbstractEnergy expenditure rises above resting energy expenditure when physical activity is performed. The activity-induced energy expenditure varies with the muscle mass involved and the intensity at which the activity is performed: it ranges between 2 and 18 METs approximately. Differences in duration, frequency and intensity of physical activities may create considerable variations in total energy expenditure. The Physical Activity Level (= total energy expenditure divided by resting energy expenditure) varies between 1.2 and 2.2–2.5 in healthy adults. Increases in activity-induced energy expenditure have been shown to result in increases in total energy expenditure, which are usually greater than the increase in activity-induced energy expenditure itself. No evidence for increased spontaneous physical activity, measured by diary, interview or accelerometer, was found. However, this does not exclude increased physical activity that can not be measured by these methods. Part of the difference may also be explained by the post-exercise elevation of metabolic rate.If changes in the level of physical activity affect energy balance, this should result in changes in body mass or body composition. Modest decreases of body mass and fat mass are found in response to increases in physical activity, induced by exercise training, which are usually smaller than predicted from the increase in energy expenditure. This indicates that the training-induced increase in total energy expenditure is at least partly compensated for by an increase in energy intake. There is some evidence that the coupling between energy expenditure and energy intake is less at low levels of physical activity. Increasing the level of physical activity for weight loss may therefore be most effective in the most sedentary individuals.


Author(s):  
Sarah L McLennan ◽  
Amanda Henry ◽  
Lynne M Roberts ◽  
Sai S Siritharan ◽  
Melissa Ojurovic ◽  
...  

Abstract Background Preeclampsia is a major pregnancy complication associated with long-term maternal cardiometabolic disease. Research generally is focused on metabolic and pathophysiological changes during pregnancy, however, there is much less focus on the early postpartum period in subjects who suffered preeclampsia. The aim of this study was to (a) characterise energy intake and expenditure six months following normotensive and preeclamptic pregnancies, and (b) examine associations between energy balance, body composition, insulin resistance measures (HOMA-IR), and clinical characteristics. Design A cross-sectional study six months following normotensive (n=75) and preeclamptic (n=22) pregnancies was performed. Metabolic measurements included: anthropometrics measures, body composition via bioelectrical impedance analysis, 24-hour energy expenditure via SenseWear Armbands, energy intake via a three-day food diary, and serum metabolic parameters. Results Six months following preeclampsia, women had a significantly higher weight (77.3±20.9kg versus 64.5±11.4kg, p=0.01), fat mass percentage (FM%) (40.7±7.4% versus 34.9±8.1%, p=0.004), and insulin resistance (HOMA-IR 2.2±1.5 versus 1.0±0.7, p=0.003), as well as reduced HDL levels (1.5±0.4 mmol/L versus 1.8±0.4 mmol/L, p=0.01) compared to normotensive women. Women post-preeclampsia had lower activity-related energy expenditure (p=0.02) but a decreased total energy intake (p=0.02), leading to a more negative energy balance compared to their normotensive counterparts (-1,942 kJ/24-hours versus -480 kJ/24-hours; p=0.02). Conclusion Increases in insulin resistance and FM%, reduced HDL, and more sedentary lifestyles characterise the postpartum period following preeclamptic compared with normotensive pregnancies. Early post-preeclampsia interventions, such as lifestyle behaviour change, should be implemented and assessed to determine whether they reduce long-term cardiometabolic risk in women who experienced preeclampsia during pregnancy.


1993 ◽  
Vol 264 (5) ◽  
pp. E706-E711 ◽  
Author(s):  
M. I. Goran ◽  
W. H. Carpenter ◽  
E. T. Poehlman

There is a sparsity of data on energy expenditure in young children. We therefore examined the components of daily energy expenditure in a group of 30 children (16 boys, 14 girls; age 4–6 yr) characterized for body weight, height, heart rate, and body composition from bioelectrical resistance. Total energy expenditure (TEE) was measured over 14 days under free living conditions by doubly labeled water, resting energy expenditure (REE) from indirect calorimetry, and activity energy expenditure was estimated from the difference between TEE and REE. Mean TEE was 1,379 +/- 290 kcal/day, which was 475 +/- 202 kcal/day lower than energy intake recommendations for this age group. Activity-related energy expenditure was estimated to be 267 +/- 203 kcal/day. TEE was most significantly related to fat-free mass (FFM; r = 0.86; P < 0.001), body weight (r = 0.83; P < 0.001), and REE (r = 0.80; P < 0.001). When TEE was adjusted for FFM, a significant correlation with heart rate was observed (partial r = 0.54; P = 0.002). Collectively, 86% of interindividual variation in TEE was accounted for by FFM, heart rate, and REE. We conclude that, in young 4- to 6-yr-old children, 1) TEE is approximately 25% lower than current recommendations for energy intake and 2) combined measurement of FFM, heart rate, and REE explain 86% of interindividual variation in TEE, thus providing a possible alternative method to estimate TEE in young children.


1994 ◽  
Vol 72 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Peter S. W. Davies ◽  
W. A. Coward ◽  
J. Gregory ◽  
A. White ◽  
A. Mills

In a cohort (n 81) of healthy children aged 1.5–4.5 years, measurements of energy intake and energy expenditure were compared. Energy intake was calculated following a 4 d weighed record completed by the mother or guardian of the child. Total energy expenditure was measured using the doubly-labelled water technique. Mean energy intake and expenditure in the cohort were 4773 kJ/d and 4928 kJ/d respectively. The mean relative bias between the techniques was 154 kJ/d. In the older children (3.5–4.5 years) the mean relative bias was only 37 kJ/d. At the population level the measurements of energy intake and energy expenditure were extremely close, and the study has provided sufficient confidence in weighed intake methodology for it to be used in a major nationwide study of dietary intake and nutritional status of children aged 1.5–4.5 years.


1995 ◽  
Vol 73 (3) ◽  
pp. 337-347 ◽  
Author(s):  
Klaas R. Westerterp ◽  
Jeroen H. H. L. M. Donkers ◽  
Elisabeth W. H. M. Fredrix ◽  
Piet oekhoudt

In adults, body mass (BM) and its components fat-free mass (FFM) and fat mass (FM) are normally regulated at a constant level. Changes in FM and FFM are dependent on energy intake (EI) and energy expenditure (EE). The body defends itself against an imbalance between EI and EE by adjusting, within limits, the one to the other. When, at a given EI or EE, energy balance cannot be reached, FM and FFM will change, eventually resulting in an energy balance at a new value. A model is described which simulates changes in FM and FFM using EI and physical activity (PA) as input variables. EI can be set at a chosen value or calculated from dietary intake with a database on the net energy of foods. PA can be set at a chosen multiple of basal metabolic rate (BMR) or calculated from the activity budget with a database on the energy cost of activities in multiples of BMR. BMR is calculated from FFM and FM and, if necessary, FFM is calculated from BM, height, sex and age, using empirical equations. The model uses existing knowledge on the adaptation of energy expenditure (EE) to an imbalance between EI and EE, and to resulting changes in FM and FFM. Mobilization and storage of energy as FM and FFM are functions of the relative size of the deficit (EI/EE) and of the body composition. The model was validated with three recent studies measuring EE at a fixed EI during an interval with energy restriction, overfeeding and exercise training respectively. Discrepancies between observed and simulated changes in energy stores were within the measurement precision of EI, EE and body composition. Thus the consequences of a change in dietary intake or a change in physical activity on body weight and body composition can be simulated.


Sign in / Sign up

Export Citation Format

Share Document