scholarly journals Localisation of transforming growth factor β1 and β3 mRNA transcripts in normal and fibrotic human lung

Thorax ◽  
2001 ◽  
Vol 56 (7) ◽  
pp. 549-556
Author(s):  
R K Coker ◽  
G J Laurent ◽  
P K Jeffery ◽  
R M du Bois ◽  
C M Black ◽  
...  

BACKGROUNDTransforming growth factor β1 is implicated in the pathogenesis of lung fibrosis. It promotes extracellular matrix accumulation by increasing procollagen synthesis and reducing degradation. TGFβ1 gene and protein expression increase in experimental lung fibrosis, and TGFβ1 antibodies attenuate fibrosis in mice. The role of other TGFβ isoforms is unclear. This study aimed to localise TGFβ1 and TGFβ3 gene expression in fibrotic human lung and compare it with that in normal human lung.METHODSLung tissue from patients with cryptogenic fibrosing alveolitis and fibrosis associated with systemic sclerosis was examined by in situ hybridisation. Macroscopically normal lung from carcinoma resections was used as control tissue. Digoxigenin labelled riboprobes were synthesised from TGFβ isoform specific cDNA templates.RESULTSThe digoxigenin labelled riboprobes were sensitive and permitted precise cellular localisation of mRNA transcripts. TGFβ1 and TGFβ3 mRNA transcripts were widespread in normal lung and localised to alveolar macrophages and bronchiolar epithelium. TGFβ1 but not TGFβ3 mRNA was detected in mesenchymal and endothelial cells. In fibrotic lung tissue mRNA transcripts for both isoforms were also detected in metaplastic type II cells. TGFβ1 gene expression was enhanced in some patients. TGFβ3 was expressed in fibrotic lung but was not consistently altered compared with controls.CONCLUSIONTGFβ1mRNA transcripts were localised in normal and fibrotic human lung and TGFβ3 gene expression in human lung fibrosis was shown for the first time. The results suggest that TGFβ1 may play the predominant role in pathogenesis. It is suggested that TGFβ1 should be the primary target of anticytokine treatments for pulmonary fibrosis.

Lung Cancer ◽  
2008 ◽  
Vol 62 (1) ◽  
pp. 23-34 ◽  
Author(s):  
Eugene P. Kopantzev ◽  
Galina S. Monastyrskaya ◽  
Tatyana V. Vinogradova ◽  
Marina V. Zinovyeva ◽  
Marya B. Kostina ◽  
...  

2018 ◽  
Vol 315 (6) ◽  
pp. L991-L1002 ◽  
Author(s):  
Carole L. Wilson ◽  
Sarah E. Stephenson ◽  
Jean Paul Higuero ◽  
Carol Feghali-Bostwick ◽  
Chi F. Hung ◽  
...  

Pericytes are key regulators of the microvasculature through their close interactions with the endothelium. However, pericytes play additional roles in tissue homeostasis and repair, in part by transitioning into myofibroblasts. Accumulation of myofibroblasts is a hallmark of fibrotic diseases such as idiopathic pulmonary fibrosis (IPF). To understand the contribution and role of pericytes in human lung fibrosis, we isolated these cells from non-IPF control and IPF lung tissues based on expression of platelet-derived growth factor receptor-β (PDGFR-β), a common marker of pericytes. When cultured in a specialized growth medium, PDGFR-β+ cells retain the morphology and marker profile typical of pericytes. We found that IPF pericytes migrated more rapidly and invaded a basement membrane matrix more readily than control pericytes. Exposure of cells to transforming growth factor-β, a major fibrosis-inducing cytokine, increased expression of α-smooth muscle actin and extracellular matrix genes in both control and IPF pericytes. Given that pericytes are uniquely positioned in vivo to respond to danger signals of both systemic and tissue origin, we stimulated human lung pericytes with agonists having pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). Both control and IPF lung pericytes increased expression of proinflammatory chemokines in response to specific PAMPs and DAMPs released from necrotic cells. Our results suggest that control and IPF lung pericytes are poised to react to tissue damage, as well as microbial and fibrotic stimuli. However, IPF pericytes are primed for migration and matrix invasion, features that may contribute to the function of these cells in lung fibrosis.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Martin L. Decaris ◽  
Johanna R. Schaub ◽  
Chun Chen ◽  
Jacob Cha ◽  
Gail G. Lee ◽  
...  

Abstract Rationale αv integrins, key regulators of transforming growth factor-β activation and fibrogenesis in in vivo models of pulmonary fibrosis, are expressed on abnormal epithelial cells (αvβ6) and fibroblasts (αvβ1) in fibrotic lungs. Objectives We evaluated multiple αv integrin inhibition strategies to assess which most effectively reduced fibrogenesis in explanted lung tissue from patients with idiopathic pulmonary fibrosis. Methods Selective αvβ6 and αvβ1, dual αvβ6/αvβ1, and multi-αv integrin inhibitors were characterized for potency, selectivity, and functional activity by ligand binding, cell adhesion, and transforming growth factor-β cell activation assays. Precision-cut lung slices generated from lung explants from patients with idiopathic pulmonary fibrosis or bleomycin-challenged mouse lungs were treated with integrin inhibitors or standard-of-care drugs (nintedanib or pirfenidone) and analyzed for changes in fibrotic gene expression or TGF-β signaling. Bleomycin-challenged mice treated with dual αvβ6/αvβ1 integrin inhibitor, PLN-74809, were assessed for changes in pulmonary collagen deposition and Smad3 phosphorylation. Measurements and main results Inhibition of integrins αvβ6 and αvβ1 was additive in reducing type I collagen gene expression in explanted lung tissue slices from patients with idiopathic pulmonary fibrosis. These data were replicated in fibrotic mouse lung tissue, with no added benefit observed from inhibition of additional αv integrins. Antifibrotic efficacy of dual αvβ6/αvβ1 integrin inhibitor PLN-74809 was confirmed in vivo, where dose-dependent inhibition of pulmonary Smad3 phosphorylation and collagen deposition was observed. PLN-74809 also, more potently, reduced collagen gene expression in fibrotic human and mouse lung slices than clinically relevant concentrations of nintedanib or pirfenidone. Conclusions In the fibrotic lung, dual inhibition of integrins αvβ6 and αvβ1 offers the optimal approach for blocking fibrogenesis resulting from integrin-mediated activation of transforming growth factor-β.


2018 ◽  
Vol 315 (5) ◽  
pp. L682-L696 ◽  
Author(s):  
Katharina Heinzelmann ◽  
Mareike Lehmann ◽  
Michael Gerckens ◽  
Nina Noskovičová ◽  
Marion Frankenberger ◽  
...  

Fibroblasts play an important role in lung homeostasis and disease. In lung fibrosis, fibroblasts adopt a proliferative and migratory phenotype, with increased expression of α-smooth muscle actin (αSMA) and enhanced secretion of extracellular matrix components. Comprehensive profiling of fibroblast heterogeneity is limited because of a lack of specific cell-surface markers. We have previously profiled the surface proteome of primary human lung fibroblasts. Here, we sought to define and quantify a panel of cluster of differentiation (CD) markers in primary human lung fibroblasts and idiopathic pulmonary fibrosis (IPF) lung tissue, using immunofluorescence and FACS analysis. Fibroblast function was assessed by analysis of replicative senescence. We observed the presence of distinct fibroblast phenotypes in vivo, characterized by various combinations of Desmin, αSMA, CD36, or CD97 expression. Most markers demonstrated stable expression over passages in vitro, but significant changes were observed for CD36, CD54, CD82, CD106, and CD140a. Replicative senescence of fibroblasts was observed from passage 10 onward. CD36- and CD97-positive but αSMA-negative cells were present in remodeled areas of IPF lungs. Transforming growth factor (TGF)-β treatment induced αSMA and collagen I expression but repressed CD36 and CD97 expression. We identified a panel of stable surface markers in human lung fibroblasts, applicable for positive-cell isolation directly from lung tissue. TGF-β exposure represses CD36 and CD97 expression, despite increasing αSMA expression; we therefore identified complex surface protein changes during fibroblast-myofibroblast activation. Coexistence of quiescence and activated fibroblast subtypes in the IPF lung suggests dynamic remodeling of fibroblast activation upon subtle changes to growth factor exposure in local microenvironmental niches.


1998 ◽  
Vol 332 (2) ◽  
pp. 297-301 ◽  
Author(s):  
Robina K. COKER ◽  
Geoffrey J. LAURENT ◽  
Karim DABBAGH ◽  
James DAWSON ◽  
Robin J. McANULTY

Transforming growth factor (TGF) β2 gene expression was examined in murine, rat and human lung by in situ hybridization with riboprobes. Hybridization signal was observed in a variety of cells with the sense probe, and Northern-blot analysis with this probe demonstrated the presence of a novel 3.5 kb transcript. This first report suggesting the existance of a natural TGFβ2 antisense transcript raises the possibility that such a transcript may play a role in regulating TGFβ2 production.


2018 ◽  
Author(s):  
Jin Jin ◽  
Shinsaku Togo ◽  
Kotaro Kadoya ◽  
Miniwan Tulafu ◽  
Yukiko Namba ◽  
...  

AbstractPirfenidone, an antifibrotic agent used for treatment of idiopathic pulmonary fibrosis (IPF), functions by inhibiting myofibroblast differentiation, which is involved in transforming growth factor (TGF)-β1-induced IPF pathogenesis. However, unlike normal lung fibroblasts, the relationship between pirfenidone responses of TGF-β1-induced human fibrotic lung fibroblasts and lung fibrosis is unknown. Here, we investigated the effect of pirfenidone on the functions of two new targets, collagen triple helix repeat containing protein 1 (CTHRC1) and four-and-a-half LIM domain protein 2 (FHL2), which included fibroblast activity, collagen gel contraction, and migration toward fibronectin. Compared to control lung fibroblasts, pirfenidone restored TGF-β1-stimulated fibroblast-mediated collagen gel contraction, migration, and CTHRC1 release in lung fibrotic fibroblasts. Furthermore, pirfenidone attenuated TGF-β1- and CTHRC1-induced fibroblast activity, bone morphogenic protein-4/Gremlin1 upregulation, and α-smooth muscle actin, fibronectin, and FHL2 downregulation, similar to that observed post-CTHRC1 inhibition. In contrast, FHL2 inhibition suppressed migration and fibronectin expression but did not downregulate CTHRC1. Overall, pirfenidone suppressed fibrotic fibroblast-mediated fibrotic processes via inverse regulation of CTHRC1-induced lung fibroblast activity. Thus, CTHRC1 can be used for predicting pirfenidone response and developing new therapeutic target for lung fibrosis.Summary statementPirfenidone suppressed TGF-β1-mediated fibrotic processes in fibrotic lung fibroblasts by attenuating CTHRC1 expression, suggesting that CTHRC1 may be a novel therapeutic target for treating patients with lung fibrosis.


2008 ◽  
Vol 31 (4) ◽  
pp. 2
Author(s):  
Tom Appleton ◽  
Shirine Usmani ◽  
John Mort ◽  
Frank Beier

Background: Articular cartilage degeneration is a hallmark of osteoarthritis (OA). We previously identified increased expression of transforming growth factor alpha (TGF?) and chemokine (C-C motif) ligand 2 (CCL2) in articular cartilage from a rat modelof OA (1,2). We subsequently reported that TGF? signalling modified chondrocyte cytoskeletal organization, increased catabolic and decreased anabolic gene expression and suppressed Sox9. Due to other roles in chondrocytes, we hypothesized that the effects ofTGF? on chondrocytes are mediated by Rho/ROCK and MEK/ERK signaling pathways. Methods: Primary cultures of chondrocytes and articularosteochondral explants were treated with pharmacological inhibitors of MEK1/2(U0126), ROCK (Y27632), Rho (C3), p38 MAPK (SB202190) and PI3K (LY294002) to elucidate pathway involvement. Results: Using G-LISA we determined that stimulation of primary chondrocytes with TGF? activates RhoA. Reciprocally, inhibition of RhoA/ROCK but not other signalling pathways prevents modification of the actin cytoskeleton in responseto TGF?. Inhibition of MEK/ERKsignaling rescued suppression of anabolic gene expression by TGF? including SOX9 mRNA and protein levels. Inhibition of MEK/ERK, Rho/ROCK, p38 MAPK and PI3K signalling pathways differentially controlled the induction of MMP13 and TNF? gene expression. TGF? also induced expression of CCL2 specifically through MEK/ERK activation. In turn, CCL2 treatment induced the expression of MMP3 and TNF?. Finally, we assessed cartilage degradation by immunohistochemical detection of type II collagen cleavage fragments generated by MMPs. Blockade of RhoA/ROCK and MEK/ERK signalling pathways reduced the generation of type IIcollagen cleavage fragments in response to TGF? stimulation. Conclusions: Rho/ROCK signalling mediates TGF?-induced changes inchondrocyte morphology, while MEK/ERK signalling mediates the suppression ofSox9 and its target genes, and CCL2 expression. CCL2, in turn, induces the expression of MMP3 and TNF?, two potent catabolic factors known to be involved in OA. These pathways may represent strategic targets for interventional approaches to treating cartilage degeneration in osteoarthritis. References: 1. Appleton CTG et al. Arthritis Rheum 2007;56:1854-68. 2. Appleton CTG et al. Arthritis Rheum 2007; 56:3693-705.


Sign in / Sign up

Export Citation Format

Share Document