scholarly journals Effect of ambient temperature during acute aerobic exercise on short-term appetite, energy intake, and plasma acylated ghrelin in recreationally active males

2013 ◽  
Vol 38 (8) ◽  
pp. 905-909 ◽  
Author(s):  
Lucy K. Wasse ◽  
James A. King ◽  
David J. Stensel ◽  
Caroline Sunderland

Ambient temperature during exercise may affect energy intake regulation. Compared with a temperate (20 °C) environment, 1 h of running followed by 6 h of rest tended to decrease energy intake from 2 ad libitum meals in a hot (30 °C) environment but increase energy intake in a cool (10 °C) environment (p = 0.08). Core temperature changes did not appear to mediate this trend; whether acylated ghrelin is involved is unclear. Further research is warranted to clarify these findings.

2011 ◽  
Vol 36 (6) ◽  
pp. 958-966 ◽  
Author(s):  
Liliana Balaguera-Cortes ◽  
Karen E. Wallman ◽  
Timothy J. Fairchild ◽  
Kym J. Guelfi

Previous research has shown that resistance and aerobic exercise have differing effects on perceived hunger and circulating levels of appetite-related hormones. However, the effect of resistance and aerobic exercise on actual energy intake has never been compared. This study investigated the effect of an acute bout of resistance exercise, compared with aerobic exercise, on subsequent energy intake and appetite-regulating hormones. Ten active men completed 3 trials in a counterbalanced design: 45 min of resistance exercise (RES; free and machine weights), aerobic exercise (AER; running), or a resting control trial (CON). Following exercise or CON, participants had access to a buffet-style array of breakfast foods and drinks to consume ad libitum. Plasma concentrations of a range of appetite-regulating hormones were measured throughout each trial. Despite significantly higher energy expenditure with AER compared with RES (p < 0.05), there was no difference in total energy intake from the postexercise meal between trials (p = 0.779). Pancreatic polypeptide was significantly higher prior to the meal after both RES and AER compared with CON. In contrast, active ghrelin was lower following RES compared with both CON and AER (p ≤ 0.05), while insulin was higher following RES compared with CON (p = 0.013). In summary, the differential response of appetite-regulating hormones to AER and RES does not appear to influence energy intake in the postexercise meal. However, given the greater energy expenditure associated with AER compared with RES, AER modes of exercise may be preferable for achieving short-term negative energy balance.


2020 ◽  
pp. 1-9
Author(s):  
Julia K. Zakrzewski-Fruer ◽  
Rachel N. Horsfall ◽  
Diane Cottrill ◽  
John Hough

Abstract This study examined the effect of ambient temperature on energy intake, perceived appetite and gut hormone responses during rest in men. Thirteen men (age 21·5 (sd 1·4) years; BMI 24·7 (sd 2·2) kg/m2) completed three, 5·5 h conditions in different ambient temperatures: (i) cold (10°C), (ii) thermoneutral (20°C) and (iii) hot (30°C). A standardised breakfast was consumed after fasting measures, and an ad libitum lunch provided at 4–4·5 h. Blood samples (analysed for plasma acylated ghrelin, total peptide tyrosine-tyrosine (PYY) and total glucagon-like peptide 1 (GLP-1) concentrations), perceived appetite and thermoregulatory responses were collected throughout. Linear mixed models were used for statistical analyses. Ad libitum energy intake was 1243 (sd 1342) kJ higher in 10°C and 1189 (sd 1219) kJ higher in 20 v. 30°C (P = 0·002). Plasma acylated ghrelin, total PYY and GLP-1 concentrations did not differ significantly between the conditions (P ≥ 0·303). Sensitivity analyses for the 4 h pre-lunch period showed that perceived overall appetite was lower in both 30 and 10°C when compared with 20°C (P ≤ 0·019). In conclusion, acutely resting in a hot compared with a thermoneutral and cold ambient temperature reduced lunchtime ad libitum energy intake in healthy men. Suppressed perceived appetite may have contributed to the reduced energy intake in the hot compared with thermoneutral ambient temperature, whereas gut hormones did not appear to play an important role.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
İsmail Mücahit Alptekin ◽  
Ece Erdoğan ◽  
Aylin İşler ◽  
Esma Cansu Yanalak ◽  
Funda Pınar Çakiroğlu ◽  
...  

Purpose Previous studies have reported that dietary fibers such as polydextrose and maltodextrin can reduce food intake; however, the studies on the differences of this effect are insufficient. The purpose of this paper is to compare the effects of dietary fibers maltodextrin and polydextrose on alterations of short-term satiety, energy intake and postprandial blood glucose in healthy females. Design/methodology/approach This study was designed as a randomized, crossover and double blind research. For this purpose, 21 healthy females consumed a milkshake containing 0 g (control), 15 g polydextrose (PDX) and 15 g maltodextrin (MDX), and an ad libitum lunch meal was served 150 min later. Subjective appetite scores (hunger, satiety, prospective food consumption and desire to eat) were measured using a visual analog scale. Appetite scores and blood glucose were measured before preload and once per 15 min after milkshake consumption. Findings Visual analog scale scores showed that PDX had an improved effect on satiety and hunger feelings. Compared to the control, dietary fiber increased the Area Under Curve (AUC) scores of satiety (p < 0.001) and decreased the AUC scores of hunger (p < 0.001), prospective food consumption (p < 0.001) and desire to eat (p < 0.001). Energy intake during ad libitum meal was significantly lower in PDX (Control: 862 (54.3) Kcal versus PDX: 679 (35.4) Kcal and MDX: 780 (49.3) Kcal. Moreover, the blood glucose levels were significantly lower in MDX. Originality/value This study conducted with healthy females demonstrated that PDX was more effective in inducing satiety during subsequent food intake, and that postprandial blood glucose were within more healthy levels in MDX.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alessio Basolo ◽  
Takafumi Ando ◽  
Douglas C. Chang ◽  
Tim Hollstein ◽  
Jonathan Krakoff ◽  
...  

ObjectiveCirculating albumin is negatively associated with adiposity but whether it is associated with increased energy intake, lower energy expenditure or weight gain has not been examined.MethodsIn study 1 (n=238; 146 men), we evaluated whether fasting albumin concentration was associated with 24-h energy expenditure and ad libitum energy intake. In study 2 (n=325;167 men), we evaluated the association between plasma albumin and change in weight and body composition.ResultsAfter adjustment for known determinants of energy intake lower plasma albumin concentration was associated with greater total daily energy intake (β= 89.8 kcal/day per 0.1 g/dl difference in plasma albumin, p=0.0047). No associations were observed between plasma albumin concentrations and 24-h energy expenditure or 24-h respiratory quotient (p&gt;0.2). Over 6 years, volunteers gained on average 7.5 ± 11.7 kg (p&lt;0.0001). Lower albumin concentrations were associated with greater weight [β=3.53 kg, p=0.039 (adjusted for age, sex, follow up time), CI 0.16 to 6.21 per 1 g/dl difference albumin concentration] and fat mass (β=2.3 kg, p=0.022), respectively, but not with changes in fat free mass (p=0.06).ConclusionsLower albumin concentrations were associated with increased ad libitum food intake and weight gain, indicating albumin as a marker of energy intake regulation.Clinical Trial RegistrationClinicalTrials.gov, identifiers NCT00340132, NCT00342732.


Nutrients ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 107 ◽  
Author(s):  
Keri McCrickerd ◽  
Priscilla Pei Sian Tay ◽  
Claudia Shuning Tang ◽  
Ciarán Gerard Forde

Reformulation strategies to reduce the energy density of commonly consumed foods and beverages are intended to support weight management, but expectations generated by labelling these as ‘healthier’ alternatives can have unintended effects on the product’s sensory evaluations and consumption behaviours. We compared the impact of four different strategies for presenting a lower-calorie beverage to consumers on product perceptions, short-term appetite and energy intake. Participants (N = 112) consumed higher- (211 kcal/portion) and lower-calorie (98 kcal/portion) fixed-portion soymilks in the morning across two test days, with the lower-calorie version presented in one of four contexts varying in label information and sensory quality: (1) sensory-matched/unlabelled, (2) sensory-matched/labelled, (3) sensory-reduced (less sweet and creamy)/labelled, and (4) sensory-enhanced (sweeter and creamier)/labelled. The label was Singapore’s Healthier Choice Symbol, which also highlighted that the soymilk was lower calorie. Changes in reported appetite, ad libitum lunch intake, and self-reported intake for the rest of the text day were recorded. Results indicated that total energy intake was consistently lower on the days the lower calorie beverages were consumed, regardless of how they were presented. However, the ‘healthier choice’ label increased hunger prior to lunch and reduced the soymilks’ perceived thickness and sweetness compared to the same unlabelled version. Increasing the product’s sensory intensity successfully maintained liking, experienced sensory quality and appetite. Results suggest that food companies wanting to explicitly label product reformulations could combine messages of ‘lower calorie’ and ‘healthier choice’ with appropriate taste and texture enhancements to maintain acceptance and avoid negative effects on appetite.


2016 ◽  
Vol 115 (10) ◽  
pp. 1875-1884 ◽  
Author(s):  
Mark Hopkins ◽  
Catherine Gibbons ◽  
Phillipa Caudwell ◽  
John E. Blundell ◽  
Graham Finlayson

AbstractAlthough the effects of dietary fat and carbohydrate on satiety are well documented, little is known about the impact of these macronutrients on food hedonics. We examined the effects ofad libitumand isoenergetic meals varying in fat and carbohydrate on satiety, energy intake and food hedonics. In all, sixty-five overweight and obese individuals (BMI=30·9 (sd3·8) kg/m2) completed two separate test meal days in a randomised order in which they consumed high-fat/low-carbohydrate (HFLC) or low-fat/high-carbohydrate (LFHC) foods. Satiety was measured using subjective appetite ratings to calculate the satiety quotient. Satiation was assessed by intake atad libitummeals. Hedonic measures of explicit liking (subjective ratings) and implicit wanting (speed of forced choice) for an array of HFLC and LFHC foods were also tested before and after isoenergetic HFLC and LFHC meals. The satiety quotient was greater afterad libitumand isoenergetic meals during the LFHC condition compared with the HFLC condition (P=0·006 andP=0·001, respectively), whereasad libitumenergy intake was lower in the LFHC condition (P<0·001). Importantly, the LFHC meal also reduced explicit liking (P<0·001) and implicit wanting (P=0·011) for HFLC foods compared with the isoenergetic HFLC meal, which failed to suppress the hedonic appeal of subsequent HFLC foods. Therefore, when coupled with increased satiety and lower energy intake, the greater suppression of hedonic appeal for high-fat food seen with LFHC foods provides a further mechanism for why these foods promote better short-term appetite control than HFLC foods.


Appetite ◽  
2007 ◽  
Vol 49 (1) ◽  
pp. 284
Author(s):  
M.A. Cornier ◽  
S.S. Von Kaenel ◽  
D.H. Bessesen

2012 ◽  
Vol 37 (3) ◽  
pp. 520-529 ◽  
Author(s):  
Shlomi Tamam ◽  
Nick Bellissimo ◽  
Barkha P. Patel ◽  
Scott G. Thomas ◽  
G. Harvey Anderson

The effect of short duration exercise (EXR) on food intake (FI) and energy balance (EB) is not well understood in either normal weight (NW) or overweight (OW) and obese (OB) 9–14 years old children. Our purpose was to describe the effects of activity and a glucose drink on short term FI, appetite, and EB in NW, OW, and OB boys. Each boy received in random order either a noncaloric Sucralose sweetened control or glucose (1.0 g·kg–1 body weight) drink 5 min after either exercise (EXR) or sedentary (SED) activity. Boys exercised for 15 min at their ventilation threshold (VT) in experiment 1 or at 25% above their VT in experiment 2. FI was measured at an ad libitum pizza meal 30 min after drink consumption. FI was lower after the glucose drink (p < 0.001) but not affected by activity, even though EXR increased appetite (p < 0.001). OW/OB boys ate more total food than NW boys (p = 0.020). EB over the duration of the experiments was reduced by EXR in OW/OB boys (p = 0.013) but not in NW boys in either experiment (p > 0.05). We conclude that intake regulation in OW/OB boys in response to a glucose drink is similar to NW boys, but it may be less responsive to activity.


2012 ◽  
Vol 112 (4) ◽  
pp. 552-559 ◽  
Author(s):  
Lucy K. Wasse ◽  
Caroline Sunderland ◽  
James A. King ◽  
Rachel L. Batterham ◽  
David J. Stensel

The reason for high altitude anorexia is unclear but could involve alterations in the appetite hormones ghrelin and peptide YY (PYY). This study examined the effect of resting and exercising in hypoxia (12.7% O2; ∼4,000 m) on appetite, energy intake, and plasma concentrations of acylated ghrelin and PYY. Ten healthy males completed four, 7-h trials in an environmental chamber in a random order. The four trials were control-normoxia, control-hypoxia, exercise-normoxia, and exercise-hypoxia. During exercise trials, participants ran for 60 min at 70% of altitude-specific maximal oxygen consumption (V̇o2max) and then rested. Participants rested throughout control trials. A standardized meal was consumed at 2 h and an ad libitum buffet meal at 5.5 h. Area under the curve values for hunger (assessed using visual analog scales) tended to be lower during hypoxic trials than normoxic trials (repeated-measures ANOVA, P = 0.07). Ad libitum energy intake was lower ( P = 0.001) in hypoxia (5,291 ± 2,189 kJ) than normoxia (7,718 ± 2,356 kJ; means ± SD). Mean plasma acylated ghrelin concentrations were lower in hypoxia than normoxia (82 ± 66 vs. 100 ± 69 pg/ml; P = 0.005) while PYY concentrations tended to be higher in normoxia (32 ± 4 vs. 30 ± 3 pmol/l; P = 0.059). Exercise suppressed hunger and acylated ghrelin and increased PYY but did not influence ad libitum energy intake. These findings confirm that hypoxia suppresses hunger and food intake. Further research is required to determine if decreased concentrations of acylated ghrelin orchestrate this suppression.


2017 ◽  
Vol 235 (3) ◽  
pp. 193-205 ◽  
Author(s):  
Adrian Holliday ◽  
Andrew Blannin

The purpose of the study is to investigate the effect of acute bouts of high-intensity aerobic exercise of differing durations on subjective appetite, food intake and appetite-associated hormones in endurance-trained males. Twelve endurance-trained males (age = 21 ± 2 years; BMI = 21.0 ± 1.6 kg/m2; VO2max = 61.6 ± 6.0 mL/kg/min) completed four trials, within a maximum 28 day period, in a counterbalanced order: resting (REST); 15 min exercise bout (15-min); 30 min exercise bout (30-min) and 45 min exercise bout (45-min). All exercise was completed on a cycle ergometer at an intensity of ~76% VO2max. Sixty minutes post exercise, participants consumed an ad libitum meal. Measures of subjective appetite and blood samples were obtained throughout the morning, with plasma analyzed for acylated ghrelin, total polypeptide tyrosine-tyrosine (PYY) and total glucagon-like peptide 1 (GLP-1) concentrations. The following results were obtained: Neither subjective appetite nor absolute food intake differed between trials. Relative energy intake (intake – expenditure) was significantly greater after REST (2641 ± 1616 kJ) compared with both 30-min (1039 ± 1520 kJ) and 45-min (260 ± 1731 kJ), and significantly greater after 15-min (2699 ± 1239 kJ) compared with 45-min (condition main effect, P < 0.001). GLP-1 concentration increased immediately post exercise in 30-min and 45-min, respectively (condition × time interaction, P < 0.001). Acylated ghrelin was transiently suppressed in all exercise trials (condition × time interaction, P = 0.011); the greatest, most enduring suppression, was observed in 45-min. PYY concentration was unchanged with exercise. In conclusion, high-intensity aerobic cycling lasting up to 45 min did not suppress subjective appetite or affect absolute food intake, but did reduce relative energy intake, in well-trained endurance athletes. Findings question the role of appetite hormones in regulating subjective appetite in the acute post-exercise period.


Sign in / Sign up

Export Citation Format

Share Document