Influence of rest and exercise at a simulated altitude of 4,000 m on appetite, energy intake, and plasma concentrations of acylated ghrelin and peptide YY

2012 ◽  
Vol 112 (4) ◽  
pp. 552-559 ◽  
Author(s):  
Lucy K. Wasse ◽  
Caroline Sunderland ◽  
James A. King ◽  
Rachel L. Batterham ◽  
David J. Stensel

The reason for high altitude anorexia is unclear but could involve alterations in the appetite hormones ghrelin and peptide YY (PYY). This study examined the effect of resting and exercising in hypoxia (12.7% O2; ∼4,000 m) on appetite, energy intake, and plasma concentrations of acylated ghrelin and PYY. Ten healthy males completed four, 7-h trials in an environmental chamber in a random order. The four trials were control-normoxia, control-hypoxia, exercise-normoxia, and exercise-hypoxia. During exercise trials, participants ran for 60 min at 70% of altitude-specific maximal oxygen consumption (V̇o2max) and then rested. Participants rested throughout control trials. A standardized meal was consumed at 2 h and an ad libitum buffet meal at 5.5 h. Area under the curve values for hunger (assessed using visual analog scales) tended to be lower during hypoxic trials than normoxic trials (repeated-measures ANOVA, P = 0.07). Ad libitum energy intake was lower ( P = 0.001) in hypoxia (5,291 ± 2,189 kJ) than normoxia (7,718 ± 2,356 kJ; means ± SD). Mean plasma acylated ghrelin concentrations were lower in hypoxia than normoxia (82 ± 66 vs. 100 ± 69 pg/ml; P = 0.005) while PYY concentrations tended to be higher in normoxia (32 ± 4 vs. 30 ± 3 pmol/l; P = 0.059). Exercise suppressed hunger and acylated ghrelin and increased PYY but did not influence ad libitum energy intake. These findings confirm that hypoxia suppresses hunger and food intake. Further research is required to determine if decreased concentrations of acylated ghrelin orchestrate this suppression.

2019 ◽  
Vol 44 (11) ◽  
pp. 1141-1149 ◽  
Author(s):  
Mathew Butterworth ◽  
Matthew Lees ◽  
Paul Harlow ◽  
Karen Hind ◽  
Lauren Duckworth ◽  
...  

Deficiencies in protein and energy intakes are partly responsible for age-related sarcopenia. We investigated the effects of supplements matched in essential amino acid (EAA) content (7.5 g) on energy intake and appetite. Ten women aged 69.2 ± 2.7 years completed 3 trials in a randomised, crossover design. Composite appetite scores, peptide-YY (PYY), and insulin responses to a 200-mL whey protein (WP) isolate (275 kJ), a 50-mL EAA gel (GEL, 478 kJ), or nothing as the control (CON) condition were investigated over 1 h, followed by an ad libitum breakfast. Energy intake at breakfast (CON, 1957 ± 713; WP, 1413 ± 623; GEL, 1963 ± 611 kJ) was higher in CON and GEL than in WP (both P = 0.006). After accounting for supplement energy content, energy intake in GEL was higher than in CON (P = 0.0006) and WP (P = 0.0008). Time-averaged area under the curve for composite appetite scores (CON, 74 ± 20; WP, 50 ± 22; GEL, 60 ± 16 mm) was higher in CON than WP (P = 0.015). Time-averaged area under the curve for PYY (CON, 87 ± 13; WP, 119 ± 27; GEL, 97 ± 22 pg·mL−1) was higher in WP than CON (P = 0.009) and GEL (P = 0.012). In conclusion, supplementation with WP facilitated an increase in protein intake, whereas supplementation with GEL increases in both energy and protein intakes, when consumed before an ad libitum breakfast. Such findings highlight potential gel-based EAA supplementation intake for addressing age-related sarcopenia.


2016 ◽  
Vol 41 (3) ◽  
pp. 324-331 ◽  
Author(s):  
Daniel P. Bailey ◽  
David R. Broom ◽  
Bryna C.R. Chrismas ◽  
Lee Taylor ◽  
Edward Flynn ◽  
...  

Breaking up periods of prolonged sitting can negate harmful metabolic effects but the influence on appetite and gut hormones is not understood and is investigated in this study. Thirteen sedentary (7 female) participants undertook three 5-h trials in random order: (i) uninterrupted sitting (SIT), (ii) seated with 2-min bouts of light-intensity walking every 20 min (SIT + LA), and (iii) seated with 2-min bouts of moderate-intensity walking every 20 min (SIT + MA). A standardised test drink was provided at the start of each trial and an ad libitum pasta test meal provided at the end of each trial. Subjective appetite ratings and plasma acylated ghrelin, peptide YY, insulin, and glucose were measured at regular intervals. Area under the curve (AUC) was calculated for each variable. AUC values for appetite and gut hormone concentrations were unaffected in the activity breaks conditions compared with uninterrupted sitting (linear mixed modelling: p > 0.05). Glucose AUC was lower in SIT + MA than in SIT + LA (p = 0.004) and SIT (p = 0.055). There was no difference in absolute ad libitum energy intake between conditions (p > 0.05); however, relative energy intake was lower in SIT + LA (39%; p = 0.011) and SIT + MA (120%; p < 0.001) than in SIT. In conclusion, breaking up prolonged sitting does not alter appetite and gut hormone responses to a meal over a 5-h period. Increased energy expenditure from activity breaks could promote an energy deficit that is not compensated for in a subsequent meal.


2019 ◽  
Vol 57 (1) ◽  
pp. 15-22
Author(s):  
Fiastuti Witjaksono ◽  
Marcellus Simadibrata ◽  
Widjaja Lukito ◽  
Andi Wijaya ◽  
Fariz Nurwidya

Abstract Introduction. The current study aimed to assess profiles of peptide YY and ghrelin, visual analog scales (VAS) for hunger and satiety, and ad libitum intake in obese and non-obese women. Methods. This open-label non-randomized interventional study involved obese (BMI ≥ 25–35 kg/m2) and non-obese (BMI 18.5–23.0 kg/m2) women subjects. Levels of peptide YY and ghrelin were determined by radioimmunoassay and enzyme-linked immunosorbent assay (ELISA), respectively, while the degrees of hunger and satiety were measured using visual analog scale (VAS) questionnaires. The results were compared in fasting condition and in 15, 60, 120, and 180 minutes after breakfast with balance composition formulation. This study also compared the ad libitum intake within 4 hours after breakfast. Results. As compared to the non-obese group, the obese group have significantly lower levels of peptide YY in fasting, and in 15, 60, 120, and 180 minutes post-prandial, and smaller AUC (Area Under the Curve) of fasting peptide YY. Furthermore, the obese group showed significantly higher ad libitum intake. The obese group also have lower levels of ghrelin and lower VAS for hunger and higher in VAS for satiety as compared to the non-obese group. Conclusions. There were significant differences in peptide YY level, 4 hours after breakfast ad libitum intake, ghrelin level, and VAS for hunger and satiety, between obese group and non-obese one.


2015 ◽  
Vol 40 (10) ◽  
pp. 980-989 ◽  
Author(s):  
Caroline Y. Doyon ◽  
Angelo Tremblay ◽  
Laurie-Eve Rioux ◽  
Caroline Rhéaume ◽  
Katherine Cianflone ◽  
...  

The objective of the study was to assess the impact of protein composition and/or fibre enrichment of yogurt on appetite sensations and subsequent energy intake. In this double-blind crossover study, 20 healthy men (aged 32.4 ± 9.1 years) were submitted to 5 randomized testing sessions, during which they had to consume 5 isocaloric and isonproteinemic yogurt snacks (120-g servings, ∼230 kJ, ∼4.5 g protein) differing by their casein-to-whey protein ratio (C:W) or dietary fibre content: (i) control C:W = 2.8:1; (ii) high whey (HW) C:W = 1.5:1, and fibre-enriched formulations using control; (iii) 2.4 g of inulin; (iv) 1.9 g of inulin and 0.5 g of β-glucan (+IN-βG); and (v) 0.5 g of β-glucan. Appetite sensations were assessed using 150-mm visual analog scales. Plasma variables (glucose, insulin, ghrelin) were measured at 30-min intervals post-yogurt consumption for 2 h. Finally, energy intakes during ad libitum lunches offered 2 h after yogurt snacks were recorded. None of the yogurts impacted appetite sensations. Ad libitum energy intake was significantly different only between HW and control yogurts (–812 kJ; p = 0.03). Regarding post-yogurt plasma variables, a significant difference was found only between ghrelin area under the curve of the +IN-βG and the HW yogurts (–15 510 pmol/L per 120 min, p = 0.04). In conclusion, although appetite sensations were not influenced by variations in yogurts’ protein compositions, a reduced energy intake was observed during the ad libitum lunch after the HW yogurt that may be attributable to its lower C:W. Surprisingly, the fibre enrichments studied did not exert effect on appetite sensations and energy intake.


2013 ◽  
Vol 115 (11) ◽  
pp. 1599-1609 ◽  
Author(s):  
Mads Rosenkilde ◽  
Michala Holm Reichkendler ◽  
Pernille Auerbach ◽  
Signe Toräng ◽  
Anne Sofie Gram ◽  
...  

Weight loss induced by endurance exercise is often disappointing, possibly due to an increase in energy intake mediated through greater appetite. The aim of this study was to evaluate fasting, postprandial, and postexercise appetite regulation after an intervention prescribing two amounts of endurance exercise. Sixty-four sedentary, overweight, healthy young men were randomized to control (CON), moderate-dose (MOD: ∼30 min/day), or high-dose (HIGH: ∼60 min/day) endurance exercise for 12 wk. Along with subjective appetite ratings, plasma ghrelin, glucagon, insulin, peptide YY3–36, glucose, free fatty acids, and glycerol were measured during fasting and in relation to a breakfast meal and an acute bout of exercise, both at baseline and at follow-up. Ad libitum lunch energy intake was evaluated 3 h after the breakfast meal. Despite different amounts of endurance exercise, the subjects lost similar amounts of fat mass (MOD: 4.2 ± 0.5 kg; HIGH: 3.7 ± 0.5 kg). Fasting and postprandial insulin decreased ∼20% in both exercise groups ( P < 0.03 vs. CON). Appetite measurements were not upregulated in the fasting and postprandial states. On the contrary, fasting and postprandial ratings of fullness and postprandial PYY3–36 increased in HIGH ( P < 0.001 vs. CON). Ad libitum lunch energy intake remained unchanged over the course of the intervention. In both exercise groups, plasma ghrelin increased in relation to acute exercise after training. Thus neither moderate nor high doses of daily endurance exercise increased fasting and postprandial measures of appetite, but a high dose of exercise was associated with an increase in fasting and meal-related ratings of fullness and satiety.


2018 ◽  
Vol 28 (6) ◽  
pp. 602-610
Author(s):  
Linn Bøhler ◽  
Sílvia Ribeiro Coutinho ◽  
Jens F. Rehfeld ◽  
Linda Morgan ◽  
Catia Martins

Active, as opposed to inactive, individuals are able to adjust their energy intake after preloads of different energy contents. The mechanisms responsible for this remain unknown. This study examined differences in plasma concentration of appetite-related hormones in response to breakfasts of different energy contents, between active and inactive men. Sixteen healthy nonobese (body mass index = 18.5–27 kg/m2) adult males (nine active and seven inactive) participated in this study. Participants were given a high-energy (570 kcal) or a low-energy (205 kcal) breakfast in a random order. Subjective feelings of appetite and plasma concentrations of active ghrelin, active glucagon-like peptide-1, total peptide YY (PYY), cholecystokinin, and insulin were measured in fasting and every 30 min up to 2.5 hr, in response to both breakfasts. Mixed analysis of variance (fat mass [in percentage] as a covariate) revealed a higher concentration of active ghrelin and lower concentration of glucagon-like peptide-1, and cholecystokinin after the low-energy breakfast (p < .001 for all). Postprandial concentration of PYY was greater after the high energy compared with the low energy, but for inactive participants only (p = .014). Active participants had lower postprandial concentrations of insulin than inactive participants (p < .001). Differences in postprandial insulin between breakfasts were significantly lower in active compared with inactive participants (p < .001). Physical activity seems to modulate the postprandial plasma concentration of insulin and PYY after the intake of breakfasts of different energy contents, and that may contribute, at least partially, to the differences in short-term appetite control between active and inactive individuals.


2021 ◽  
Vol 18 (4) ◽  
pp. 433-439
Author(s):  
David Thivel ◽  
Pauline Genin ◽  
Alicia Fillon ◽  
Marwa Khammassi ◽  
Johanna Roche ◽  
...  

Background: While mental work has been shown to favor overconsumption, the present study compared the effect of a cognitive task alone, followed by acute exercise, or performed on a cycling desk, on short-term food intake and appetite in adults. Methods: A total of 19 normal-weight adults randomly completed: resting session (CON), 30-minute cognitive task (CT), 30-minute cognitive task followed by a 15-minute high-intensity interval exercise bout (CT–EX), and 30-minute cognitive task performed on a cycling desk (CT-CD). Energy expenditure was estimated (heart rate–workload relationship), and energy intake (EI; ad libitum) and appetite (visual analog scales) were assessed. Results: Energy expenditure was higher in CT-EX (P < .001) compared with the other conditions and in CT-CD compared with CON and CT (P < .01). EI was higher in CON (P < .05) and CT-CD compared with CT (P < .01). Relative EI was higher in CON compared with CT (P < .05) and lower in CT-EX compared with CT, CT-CD, and CON (all Ps < .001). Area under the curve desire to eat was higher in CON compared with CT (P < .05) and CT-EX (P < .01). Area under the curve prospective food consumption was higher in CON compared with CT-EX (P < .01). Overall composite appetite score was not different between conditions. Conclusion: While cycling desks are recommended to break up sedentary time, the induced increase in energy expenditure might not be enough to significantly reduce overall short-term relative EI after mental work.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3893 ◽  
Author(s):  
Desiree M. Sigala ◽  
Adrianne M. Widaman ◽  
Bettina Hieronimus ◽  
Marinelle V. Nunez ◽  
Vivien Lee ◽  
...  

Sugar-sweetened beverage (sugar-SB) consumption is associated with body weight gain. We investigated whether the changes of (Δ) circulating leptin contribute to weight gain and ad libitum food intake in young adults consuming sugar-SB for two weeks. In a parallel, double-blinded, intervention study, participants (n = 131; BMI 18–35 kg/m2; 18–40 years) consumed three beverages/day containing aspartame or 25% energy requirement as glucose, fructose, high fructose corn syrup (HFCS) or sucrose (n = 23–28/group). Body weight, ad libitum food intake and 24-h leptin area under the curve (AUC) were assessed at Week 0 and at the end of Week 2. The Δbody weight was not different among groups (p = 0.092), but the increases in subjects consuming HFCS- (p = 0.0008) and glucose-SB (p = 0.018) were significant compared with Week 0. Subjects consuming sucrose- (+14%, p < 0.0015), fructose- (+9%, p = 0.015) and HFCS-SB (+8%, p = 0.017) increased energy intake during the ad libitum food intake trial compared with subjects consuming aspartame-SB (−4%, p = 0.0037, effect of SB). Fructose-SB decreased (−14 ng/mL × 24 h, p = 0.0006) and sucrose-SB increased (+25 ng/mL × 24 h, p = 0.025 vs. Week 0; p = 0.0008 vs. fructose-SB) 24-h leptin AUC. The Δad libitum food intake and Δbody weight were not influenced by circulating leptin in young adults consuming sugar-SB for 2 weeks. Studies are needed to determine the mechanisms mediating increased energy intake in subjects consuming sugar-SB.


Nutrients ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 157 ◽  
Author(s):  
Marta Klementova ◽  
Lenka Thieme ◽  
Martin Haluzik ◽  
Renata Pavlovicova ◽  
Martin Hill ◽  
...  

Gastrointestinal hormones are involved in regulation of glucose metabolism and satiety. We tested the acute effect of meal composition on these hormones in three population groups. A randomized crossover design was used to examine the effects of two energy- and macronutrient-matched meals: a processed-meat and cheese (M-meal) and a vegan meal with tofu (V-meal) on gastrointestinal hormones, and satiety in men with type 2 diabetes (T2D, n = 20), obese men (O, n = 20), and healthy men (H, n = 20). Plasma concentrations of glucagon-like peptide -1 (GLP-1), amylin, and peptide YY (PYY) were determined at 0, 30, 60, 120 and 180 min. Visual analogue scale was used to assess satiety. We used repeated-measures Analysis of variance (ANOVA) for statistical analysis. Postprandial secretion of GLP-1 increased after the V-meal in T2D (by 30.5%; 95%CI 21.2 to 40.7%; p < 0.001) and H (by 15.8%; 95%CI 8.6 to 23.5%; p = 0.01). Postprandial plasma concentrations of amylin increased in in all groups after the V-meal: by 15.7% in T2D (95%CI 11.8 to 19.6%; p < 0.001); by 11.5% in O (95%CI 7.8 to 15.3%; p = 0.03); and by 13.8% in H (95%CI 8.4 to 19.5%; p < 0.001). An increase in postprandial values of PYY after the V-meal was significant only in H (by 18.9%; 95%CI 7.5 to 31.3%; p = 0.03). Satiety was greater in all participants after the V-meal: by 9% in T2D (95%CI 4.4 to 13.6%; p = 0.004); by 18.7% in O (95%CI 12.8 to 24.6%; p < 0.001); and by 25% in H (95%CI 18.2 to 31.7%; p < 0.001). Our results indicate there is an increase in gut hormones and satiety, following consumption of a single plant-based meal with tofu when compared with an energy- and macronutrient-matched processed-meat meat and cheese meal, in healthy, obese and diabetic men.


2020 ◽  
Vol 59 (8) ◽  
pp. 3527-3535
Author(s):  
David J. Clayton ◽  
Lewis J. James ◽  
Craig Sale ◽  
Iain Templeman ◽  
James A. Betts ◽  
...  

Abstract Purpose Intermittent energy restriction commonly refers to ad libitum energy intake punctuated with 24 h periods of severe energy restriction. This can improve markers of metabolic health but the effects on bone metabolism are unknown. This study assessed how 24 h severe energy restriction and subsequent refeeding affected markers of bone turnover. Methods In a randomised order, 16 lean men and women completed 2, 48 h trials over 3 days. On day 1, participants consumed a 24 h diet providing 100% [EB: 9.27 (1.43) MJ] or 25% [ER: 2.33 (0.34) MJ] of estimated energy requirements. On day 2, participants consumed a standardised breakfast (08:00), followed by an ad libitum lunch (12:00) and dinner (19:30). Participants then fasted overnight, returning on day 3. Plasma concentrations of C-terminal telopeptide of type I collagen (CTX), procollagen type 1 N-terminal propeptide (P1NP) and parathyroid hormone (PTH) were assessed as indices of bone metabolism after an overnight fast on days 1–3, and for 4 h after breakfast on day 2. Results There were no differences between trials in fasting concentrations of CTX, P1NP or PTH on days 1–3 (P > 0.512). During both trials, consuming breakfast reduced CTX between 1 and 4 h (P < 0.001) and PTH between 1 and 2 h (P < 0.05), but did not affect P1NP (P = 0.773) Postprandial responses for CTX (P = 0.157), P1NP (P = 0.148) and PTH (P = 0.575) were not different between trials. Ad libitum energy intake on day 2 was greater on ER [12.62 (2.46) MJ] than EB [11.91 (2.49) MJ]. Conclusions Twenty-four hour severe energy restriction does not affect markers of bone metabolism.


Sign in / Sign up

Export Citation Format

Share Document