Does blood lactate predict the chronic adaptive response to training: A comparison of traditional and talk test prescription methods

2019 ◽  
Vol 44 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Nicholas Preobrazenski ◽  
Jacob T. Bonafiglia ◽  
Matthew W. Nelms ◽  
Simo Lu ◽  
Lauren Robins ◽  
...  

The purpose of this study was to test the hypotheses (i) that interindividual variability in acute blood lactate responses during exercise at 65% of peak work rate (WRpeak; relative WRpeak protocol (REL)) will predict variability in the chronic responses to exercise training and (ii) that exercising at an intensity that causes uncomfortable speech production (negative talk test (TT) stage (NEG)) elicits high acute blood lactate responses and large adaptations to training. Twenty-eight participants completed 4 weeks of exercise training consisting of REL (n = 14) or NEG (TT, n = 14). Fifteen additional participants were assigned to a no-exercise control group (n = 15). In REL, acute blood lactate responses during the first training session significantly predicted changes in peak oxygen consumption (r = 0.69) after training. TT resulted in consistently high acute blood lactate responses. REL and TT improved (p < 0.05) peak oxygen consumption, WRpeak, and work rate at the onset of blood lactate accumulation (WROBLA). Despite nonsignificance, small to medium between-group effect sizes for changes in peak oxygen consumption, WRpeak, and WROBLA and a higher work rate, heart rate, rating of perceived exertion, and blood lactate during training at NEG support the potential superiority of TT over REL. When exercise is prescribed using a traditional method (a fixed percentage of WRpeak; REL), acute metabolic stress may partly explain the variance in the adaptations to training. In addition, TT elicited significant increases in peak oxygen consumption, WRpeak, and WROBLA, and although our small sample size limits our ability to confidently compare training adaptations between groups, our preliminary results suggest that future investigations with larger sample sizes should assess the potential superiority of TT over REL.

1999 ◽  
Vol 9 (4) ◽  
pp. 434-442 ◽  
Author(s):  
Samuel N. Cheuvront ◽  
Robert J. Moffatt ◽  
Kyle D. Biggerstaff ◽  
Shawn Bearden ◽  
Paul McDonough

Claims that ENDUROX™ enhances performance by altering metabolic responses to exercise were tested. In a double-blind crossover design, 10 male subjects were randomly assigned to consume 400 mg of placebo or 800 mg ENDUROX™ for 7 days. Cycle ergometry was performed for 30 minutes at 25%, followed by 10 min at 65% of peak oxygen consumption. After a 1-week washout period, subjects performed the identical exercise protocol following 7 days of reciprocal supplemental conditions. Expired gases were collected and analyzed continuously for oxygen consumption, minute ventilation, and respiratory exchange ratio. Heart rate, blood pressure, rating of perceived exertion, blood lactate, and serum glycerol data were also collected at regular intervals. A two-way ANOVA with repeated measures revealed no significant main or interaction effects involving group differences (p > 0.05) between trials for any variable during rest, 25% or 65% (VO2 peak), or recovery. Our findings do not support the ergogenic claims for ENDUROX™.


2003 ◽  
Vol 21 (9) ◽  
pp. 1660-1668 ◽  
Author(s):  
Kerry S. Courneya ◽  
John R. Mackey ◽  
Gordon J. Bell ◽  
Lee W. Jones ◽  
Catherine J. Field ◽  
...  

Purpose: To determine the effects of exercise training on cardiopulmonary function and quality of life (QOL) in postmenopausal breast cancer survivors who had completed surgery, radiotherapy, and/or chemotherapy with or without current hormone therapy use. Methods: Fifty-three postmenopausal breast cancer survivors were randomly assigned to an exercise (n = 25) or control (n = 28) group. The exercise group trained on cycle ergometers three times per week for 15 weeks at a power output that elicited the ventilatory equivalent for carbon dioxide. The control group did not train. The primary outcomes were changes in peak oxygen consumption and overall QOL from baseline to postintervention. Peak oxygen consumption was assessed by a graded exercise test using gas exchange analysis. Overall QOL was assessed by the Functional Assessment of Cancer Therapy–Breast scale. Results: Fifty-two participants completed the trial. The exercise group completed 98.4% of the exercise sessions. Baseline values for peak oxygen consumption (P = .254) and overall QOL (P = .286) did not differ between groups. Peak oxygen consumption increased by 0.24 L/min in the exercise group, whereas it decreased by 0.05 L/min in the control group (mean difference, 0.29 L/min; 95% confidence interval [CI], 0.18 to 0.40; P < .001). Overall QOL increased by 9.1 points in the exercise group compared with 0.3 points in the control group (mean difference, 8.8 points; 95% CI, 3.6 to 14.0; P = .001). Pearson correlations indicated that change in peak oxygen consumption correlated with change in overall QOL (r = 0.45; P < .01). Conclusion: Exercise training had beneficial effects on cardiopulmonary function and QOL in postmenopausal breast cancer survivors.


2016 ◽  
Vol 26 (4) ◽  
pp. 315-322 ◽  
Author(s):  
Colin R. Carriker ◽  
Christine M. Mermier ◽  
Trisha A. VanDusseldorp ◽  
Kelly E. Johnson ◽  
Nicholas M. Beltz ◽  
...  

Reduced partial pressure of oxygen impairs exercise performance at altitude. Acute nitrate supplementation, at sea level, may reduce oxygen cost during submaximal exercise in hypobaric hypoxia. Therefore, we investigated the metabolic response during exercise at altitude following acute nitrate consumption. Ten well-trained (61.0 ± 7.4 ml/kg/min) males (age 28 ± 7 yr) completed 3 experimental trials (T1, T2, T3). T1 included baseline demographics, a maximal aerobic capacity test (VO2max) and five submaximal intensity cycling determination bouts at an elevation of 1600 m. A 4-day dietary washout, minimizing consumption of nitrate-rich foods, preceded T2 and T3. In a randomized, double-blind, placebo-controlled, crossover fashion, subjects consumed either a nitrate-depleted beetroot juice (PL) or ~12.8 mmol nitrate rich (NR) beverage 2.5 hr before T2 and T3. Exercise at 3500 m (T2 and T3) via hypobaric hypoxia consisted of a 5-min warm-up (25% of normobaric (VO2max) and four 5-min cycling bouts (40, 50, 60, 70% of normobaric VO2max) each separated by a 4-min rest period. Cycling RPM and watts for each submaximal bout during T2 and T3 were determined during T1. Preexercise plasma nitrite was elevated following NR consumption compared with PL (1.4 ± 1.2 and 0.7 ± 0.3 uM respectively; p < .05). There was no difference in oxygen consumption (−0.5 ± 1.8, 0.1 ± 1.7, 0.7 ± 2.1, and 1.0 ± 3.0 ml/kg/min) at any intensity (40, 50, 60, 70% of VO2max), respectively) between NR and PL. Further, respiratory exchange ratio, oxygen saturation, heart rate and rating of perceived exertion were not different at any submaximal intensity between NR and PL either. Blood lactate, however, was reduced following NR consumption compared with PL at 40 and 60% of VO2max (p < .0.05). Our findings suggest that acute nitrate supplementation before exercise at 3500 m does not reduce oxygen cost but may reduce blood lactate accumulation at lower intensity workloads.


2020 ◽  
Vol 41 (12) ◽  
pp. 839-845
Author(s):  
Monica Solana-Tramunt ◽  
Bernat Buscà ◽  
Jose Morales ◽  
Adrià Miró ◽  
Joan Aguilera-Castells ◽  
...  

AbstractThe effects of wearing an intra-oral device on several ventilatory and fatigue markers have been reported for a variety of sports. The quality of the figures performed in synchronized swimming is directly affected by fatigue, and can be monitored during training sessions (TS). The aim of the study was to investigate the acute effects of wearing customized intra-oral devices on heart rate variability, rating of perceived exertion, blood lactate accumulation, and salivary cortisol production during a competitive training session. Twelve highly trained elite female athletes (age: 21.0±3.6 years) participated in the study. Fatigue markers were assessed at the beginning and at the end of the 3rd and 5th afternoon TS for that week, once with and once without an intra-oral device, in random order. Salivary cortisol levels were higher in relation to the baseline in the intra-oral device condition (P<0.05) but not in athletes without an intra-oral device. No differences between conditions were found in rating of perceived exertion (P=0.465) and blood lactate (P=0.711). No time or condition interactions or main effects were shown for heart rate variability. Thus, there is no evidence that wearing a low-arch intra-oral device is a good recommendation for high-standard athletes performing long and stressful routines.


2018 ◽  
Vol 13 (6) ◽  
pp. 687-693 ◽  
Author(s):  
Pitre C. Bourdon ◽  
Sarah M. Woolford ◽  
Jonathan D. Buckley

This study aimed to identify the minimum increment duration required to accurately assess 2 distinct lactate thresholds. A total of 21 elite rowers (12 women and 9 men) participated in this study, and each performed 8 or 9 rowing tests comprising 5 progressive incremental tests (3-, 4-, 5-, 7-, or 10-min steps) and at least three 30-min constant-intensity maximal lactate steady-state assessments. Power output (PO) at lactate threshold 1 was higher in the 3- and 4-min incremental tests. No other measures were different for lactate threshold 1. The PO at the second lactate threshold was different between most tests and was higher than the PO at maximal lactate steady state, except for the 10-min incremental test. Lactate threshold 2 oxygen consumption was higher in the 3-, 4-, and 5-min tests, but heart rate (HR) and rating of perceived exertion were not different between tests. Peak PO in the incremental tests was inversely related to the step durations (r2 = .86, P ≤ .02). Peak oxygen consumption was higher in the shorter (≤5 min) than the longer (≥7 min) incremental tests, whereas peak HR was not different between tests. These data suggest that for the methods used in this study, incremental exercise tests with step durations ≤7 min overestimate maximal lactate steady-state exercise intensity, peak physiological values are best determined using incremental tests with step durations ≤4 min, and HR measures are not affected by step duration, and therefore, prescription of training HRs can be made using any of these tests.


2020 ◽  
Vol 15 (9) ◽  
pp. 1334-1339
Author(s):  
Roland van den Tillaar ◽  
Erna von Heimburg ◽  
Guro Strøm Solli

Purpose: To compare the assessment of the maximal oxygen consumption (VO2max) in a traditional graded exercise test (GXT) with a 1-km self-paced running test on a nonmotorized treadmill in men and women. Methods: A total of 24 sport-science students (12 women: age 23.7 [7.7] y, body height 1.68 [0.02] m, body mass 66.6 [4.3] kg; 12 men: 22.1 [3.1] y, body height 1.82 [0.06] m, body mass 75.6 [11.0] kg) performed a traditional GXT on a motorized treadmill and a 1-km self-paced running test on a nonmotorized treadmill. VO2max, blood lactate, heart rate, and rating of perceived exertion, together with running velocity and duration at each test, were measured. Results: The main findings of the study were that the 1-km test produced significantly higher VO2max values (53.2 [9.9] vs 51.8 [8.8] mL/kg/min ) and blood lactate concentrations (11.9 [1.8] vs 11.1 [2.2] mmol/L) than the GXT (F ≥ 4.8, P ≤ .04, η2 ≥ .18). However, after controlling for sex, these differences were only present in men (60.6 [8.1] vs 58.1 [8.0] mL/kg/min , P = .027). Peak running velocity was higher in the GXT than in the 1-km test (15.7 [2.7] vs 13.0 [2.8] km/h). Men had higher VO2max values and running velocities than women in both tests. However, men and women used approximately similar pacing strategies during the 1-km test. Conclusions: Higher VO2max values were observed in a 1-km self-paced test than in the GXT. This indicates that a 1-km running test performed on a nonmotorized treadmill could serve as a simple and sport-specific alternative for the assessment of VO2max.


2020 ◽  
Vol 15 (2) ◽  
pp. 292-294 ◽  
Author(s):  
Andrea Fusco ◽  
Christine Knutson ◽  
Charles King ◽  
Richard P. Mikat ◽  
John P. Porcari ◽  
...  

Purpose: Although the session rating of perceived exertion (sRPE) is primarily a marker of internal training load (TL), it may be sensitive to external TL determining factors, such as duration and volume. Thus, sRPE could provide further information on accumulated fatigue not available from markers of internal TL. Therefore, the purpose of this study was to investigate sRPE during heavy training bouts at relatively constant intensity. Methods: Eleven university swimmers performed a high-volume training session consisting of 4 × 10 × 100-yd (4 × 10 × 91.4 m). Repetition lap time and heart rate were measured for each repetition and averaged for each set. Blood lactate concentration was measured after each set. At the end of each set, a 10-minute rest period was allowed, during which sRPE values were obtained, as if the training bout had ended. Results: There were no differences between sets for lap time (P = .096), heart rate (P = .717), and blood lactate concentration (P = .466), suggesting that the subjects were working at the same external and internal intensity. There was an increase (P = .0002) in sRPE between sets (first 4 [1.2], second 5 [1.3], third 7 [1.3], and fourth 8 [1.5]), suggesting that even when maintaining the same intensity, the perception of the entire workload increased with duration. Conclusions: Increases in duration, although performed with a consistent internal and external intensity, influences sRPE. These findings support the concept that sRPE may provide additional information on accumulated fatigue not available from other markers of TL.


2015 ◽  
Vol 40 (11) ◽  
pp. 1178-1185 ◽  
Author(s):  
Kristen C. Cochrane ◽  
Terry J. Housh ◽  
Nathaniel D.M. Jenkins ◽  
Haley C. Bergstrom ◽  
Cory M. Smith ◽  
...  

Ten subjects performed four 8-min rides (65%–80% peak oxygen consumption) to determine the physical working capacity at the OMNI rating of perceived exertion (RPE) threshold (PWCOMNI). Polynomial regression analyses were used to examine the patterns of responses for surface electromyographic (EMG) amplitude (EMG AMP), EMG mean power frequency (EMG MPF), mechanomyographic (MMG) AMP, and MMG MPF of the vastus lateralis as well as oxygen consumption rate, respiratory exchange ratio (RER), and power output (PO) were examined during a 1-h ride on a cycle ergometer at a constant RPE that corresponded to the PWCOMNI. EMG AMP and MMG MPF tracked the decreases in oxygen consumption rate, RER, and PO, while EMG MPF and MMG AMP tracked RPE. The decreases in EMG AMP and MMG MPF were likely attributable to decreases in motor unit (MU) recruitment and firing rate, while the lack of change in MMG AMP may have resulted from a balance between MU de-recruitment as PO decreased, and an increase in the ability of activated fibers to oscillate. The current findings suggested that during submaximal cycle ergometry at a constant RPE, MU de-recruitment and mechanical changes within the muscle may influence the perception of effort via feedback from group III and IV afferents.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Shahla Alikhani ◽  
Zaher Etemad ◽  
Kemal Azizbeigi

Background: Systematic inflammations are associated with cardiovascular diseases. The production of inflammatory mediators increases in a sedentary lifestyle and reduces with regular exercise. Objectives: The present study aimed to evaluate the effects of eight weeks of spinning workout and green tea supplementation on the anti-inflammatory and inflammatory markers and body composition of overweight women. Methods: This study was conducted on 32 overweight women who voluntarily participated in the research and were randomly assigned to the groups of spinning-green tea (SP-GT; n = 11), spinning-placebo (SP-PL; n = 11), and control (no exercise/placebo; n = 10). The experimental groups carried out eight weeks of spinning workout three days a week non-consecutively with the intensity of 11 - 17 rating of perceived exertion (RPE). Serum concentrations of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) were measured before the intervention and 48 hours after the last training session. In addition, body mass index (BMI) and body fat percentage (BF%) were measured. Results: After eight weeks of the intervention, BMI, BF%, and TNF-α significantly reduced in the SP-GT and SP-PL groups (P ≤ 0.05). Although the change in IL-6 was not significant in the intervention groups (P > 0.05), it significantly increased in the control group (P = 0.011). Moreover, a significant increase was observed in IL-10 in the SP-GT and SP-PL groups (P = 0.001). Conclusions: According to the results, spinning workout improved the inflammatory markers and body composition independent of supplementation, while green tea had a greater effect on IL-10. Therefore, spinning workout could be used for the prevention of cardiovascular risk factors through the improvement of systematic inflammation.


Sign in / Sign up

Export Citation Format

Share Document