Thermogenic flowering of taro (Colocasia esculenta, Araceae)

2004 ◽  
Vol 82 (11) ◽  
pp. 1557-1565 ◽  
Author(s):  
Anton Ivancic ◽  
Vincent Lebot ◽  
Olivier Roupsard ◽  
José Quero Garcia ◽  
Tom Okpul

Thermogenesis and its association with taro (Colocasia esculenta (L.) Schott) flowering was studied during the warmest period of the year (December 2002 – February 2003) within a large collection of heterogeneous plant material on Espiritu Santo, Vanuatu. On each studied inflorescence, temperatures of the three main parts of the spadix and the ambient air were recorded during a period of 38 h. The investigation indicates that significant thermogenic activity of taro inflorescences takes place during two successive nights: (1) during the night when an inflorescence becomes odorous (the female phase) and (2) a night later, when microsporogenesis approaches its final phase (the male phase). The highest average difference between mean temperatures of the ambient air and inflorescences were documented during the female phase, at 0500 hours (the mean temperature of the sterile appendix was 29.1 ± 0.9 °C (P = 0.05) and this was 6.8 °C above the temperature of the ambient air). Thermogenic activity is synchronized with the protogynous nature of the species and insect pollination in the early morning hours. Its main putative functions are (1) to reduce the deviations of ambient air temperatures during the most critical periods of flowering, and (2) to promote cross-pollination. It stops 1–1.5 h after pollen has been released.Key words: taro, Colocasia esculenta, thermogenesis, inflorescence development, pollination.

Botany ◽  
2009 ◽  
Vol 87 (12) ◽  
pp. 1232-1241 ◽  
Author(s):  
Anton Ivancic ◽  
Olivier Roupsard ◽  
José Quero-García ◽  
Metka Sisko ◽  
Andreja Urbanek Krajnc ◽  
...  

Thermogenesis and heat generating tissues in inflorescences of the giant taro ( Alocasia macrorrhizos (L.) G. Don) were studied from December 2005 to February 2006, on the Island of Espiritu Santo, Vanuatu. Temperatures were recorded in the ambient air, in the peduncle tissue, and on 12 positions within spadices during periods of maximum thermogenic activity, in the early morning hours of the female and male phases. The study showed that there were three thermogenic tissues: the sterile appendix, the fertile male part, and the differentiated sterile area below the fertile male part. During the female phase, heat was generated by the sterile appendix and the differentiated sterile area below the fertile male part, the smallest region of the spadix (mean ± SD = 0.86 ± 0.24 cm, 3.17% of the spadix length), and most probably by the fertile male part. Within the spadix, average temperatures gradually increased from the base of the female part and reached the first peak at the midpoint of the differentiated sterile area below the fertile male part (36.11 ± 1.54 °C). After that, they gradually decreased towards the midpoint of the fertile male part and increased again, reaching a second (main) peak at 1/4 of the sterile appendix height (44.83 ± 1.87 °C). From 1/4 to 1/2 of the appendix height they remained at more or less the same level, and then they decreased towards the tip of the spadix. During the male phase, heat was generated only within the fertile male part.


2013 ◽  
Vol 30 (8) ◽  
pp. 1757-1765 ◽  
Author(s):  
Sayed-Hossein Sadeghi ◽  
Troy R. Peters ◽  
Douglas R. Cobos ◽  
Henry W. Loescher ◽  
Colin S. Campbell

Abstract A simple analytical method was developed for directly calculating the thermodynamic wet-bulb temperature from air temperature and the vapor pressure (or relative humidity) at elevations up to 4500 m above MSL was developed. This methodology was based on the fact that the wet-bulb temperature can be closely approximated by a second-order polynomial in both the positive and negative ranges in ambient air temperature. The method in this study builds upon this understanding and provides results for the negative range of air temperatures (−17° to 0°C), so that the maximum observed error in this area is equal to or smaller than −0.17°C. For temperatures ≥0°C, wet-bulb temperature accuracy was ±0.65°C, and larger errors corresponded to very high temperatures (Ta ≥ 39°C) and/or very high or low relative humidities (5% < RH < 10% or RH > 98%). The mean absolute error and the root-mean-square error were 0.15° and 0.2°C, respectively.


Koedoe ◽  
1993 ◽  
Vol 36 (1) ◽  
Author(s):  
Dirk Wessels ◽  
Ludger Kappen

The photosynthetic behaviour of endolithic andepilithic lichens characteristic of sedimentary and volcanic rock was investigated in situ in the Mountain Zebra National Park, South Africa. The park forms part of an inland semi-desert known as the Karoo, in the Cape Province. Temperatures within Balfour sandstone were monitored, the results showing that during the early morning, temperatures within the sandstone were nearly 5@C lower than ambient air temperatures. This may enhance the frequency of water condensing on the sandstone, which may be particularly important for the endoliths Leciclea aff. sarcogynoides and Sarcogyne cf. austroafricana. Maximum photosynthetic rates of the investigated species were found at temperatures between 20@C and 30@C, far higher than the recorded optimum temperatures for lichens from temperate and desert regions. Parmelia chlorea was the most productive species. Compared to the other epiliths, Peltula capensis was found to be a moderately productive species. The photosynthetic gain of Leciclea aff. sarcogynoides and Sarcogyne cf. austro-africana was low, but the photosynthetic gain of these two species still exceeded that of Acarospora sp.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2603
Author(s):  
James Bunce

The response of carbon fixation in C3 plants to elevated CO2 is relatively larger when photosynthesis is limited by carboxylation capacity (VC) than when limited by electron transport (J). Recent experiments under controlled, steady-state conditions have shown that photosynthesis at elevated CO2 may be limited by VC even at limiting PPFD. These experiments were designed to test whether this also occurs in dynamic field environments. Leaf gas exchange was recorded every 5 min using two identical instruments both attached to the same leaf. The CO2 concentration in one instrument was controlled at 400 μmol mol−1 and one at 600 μmol mol−1. Leaves were exposed to ambient sunlight outdoors, and cuvette air temperatures tracked ambient outside air temperature. The water content of air in the leaf cuvettes was kept close to that of the ambient air. These measurements were conducted on multiple, mostly clear days for each of three species, Glycine max, Lablab purpureus, and Hemerocallis fulva. The results indicated that in all species, photosynthesis was limited by VC rather than J at both ambient and elevated CO2 both at high midday PPFDs and also at limiting PPFDs in the early morning and late afternoon. During brief reductions in PPFD due to midday clouds, photosynthesis became limited by J. The net result of the apparent deactivation of Rubisco at low PPFD was that the relative stimulation of diurnal carbon fixation at elevated CO2 was larger than would be predicted when assuming limitation of photosynthesis by J at low PPFD.


2010 ◽  
Vol 37 (9) ◽  
pp. 870 ◽  
Author(s):  
Roger S. Seymour ◽  
Ilse Silberbauer-Gottsberger ◽  
Gerhard Gottsberger

The roles of floral thermogenesis in pollination biology include attraction and reward of insects. Magnolia ovata (A.St.-Hil.) Spreng. produces ~56 g, bisexual, protogynous and scented flowers. Two distinct episodes of thermogenesis occur during anthesis: one beginning at about sunset and lasting ~3 h in the female phase and another that occurs synchronously 24 h later and lasting 4 h in the male phase. Female stage flowers produce up to 0.36 W to reach 27.3°C, which is 3.9°C above ambient air. In the male stage, corresponding values are 0.79 W, 29.7°C and 5.4°C, respectively. Most heat is generated in the petals in both phases (74 and 65%). Maximum, mass-specific rate of respiration is 23 nmol s–1 g–1 in the petals and 100 nmol s–1 g–1 in the anthers. The flowers are apparently not thermoregulatory, because respiration rate decreases, rather than increases, with decreasing ambient temperature. Scarab beetles, Cyclocephala literata, enter the floral chamber created by the petals in the female phase, mate, consume floral parts (mainly petals) and then depart in the male phase. Temperatures maintained in the floral chamber are sufficient to provide beetles with significant energy savings during their activities in both phases. Thermogenesis is, therefore, consistent with volatilisation of floral fragrances and energy rewards to beetle visitors.


Author(s):  
James Bunce

The response of carbon fixation in C3 plants to elevated CO2 is relatively larger when photosynthesis is limited by carboxylation capacity (VC) than when limited by electron transport (J). Recent experiments under controlled, steady-state conditions have shown that photosynthesis at elevated CO2 may be limited by VC even at limiting PPFD. These experiments were designed to test whether this also occurs in dynamic field environments. Leaf gas exchange was recorded every 5 minutes using two identical instruments both attached to the same leaf. The CO2 concentration in one instrument was controlled at 400 mol mol-1 and one at 600 mol mol-1. Leaves were exposed to ambient sunlight outdoors, and cuvette air temperatures tracked ambient outside air temperature. The water content of air in the leaf cuvettes was kept close to that of the ambient air. These measurements were conducted on multiple, mostly clear days for each of three species, Glycine max, Lablab purpureus, and Hemerocallis fulva. The results indicated that in all species, photosynthesis was limited by VC rather than J at both ambient and elevated CO2 both at high midday PPFDs and also at limiting PPFDs in the early morning and late afternoon. During brief reductions in PPFD due to midday clouds, photosynthesis became limited by J, The net result of the apparent deactivation of Rubisco at low PPFD was that the relative stimulation of diurnal carbon fixation at elevated CO2 was larger than would be predicted when assuming limitation of photosynthesis by J at low PPFD.


1999 ◽  
Vol 87 (1) ◽  
pp. 243-246 ◽  
Author(s):  
John W. Castellani ◽  
Andrew J. Young ◽  
James E. Kain ◽  
Michael N. Sawka

This study examined how time of day affects thermoregulation during cold-water immersion (CWI). It was hypothesized that the shivering and vasoconstrictor responses to CWI would differ at 0700 vs. 1500 because of lower initial core temperatures (Tcore) at 0700. Nine men were immersed (20°C, 2 h) at 0700 and 1500 on 2 days. No differences ( P > 0.05) between times were observed for metabolic heat production (M˙, 150 W ⋅ m−2), heat flow (250 W ⋅ m−2), mean skin temperature (T sk, 21°C), and the mean body temperature-change in M˙(ΔM˙) relationship. Rectal temperature (Tre) was higher ( P < 0.05) before (Δ = 0.4°C) and throughout CWI during 1500. The change in Tre was greater ( P < 0.05) at 1500 (−1.4°C) vs. 0700 (−1.2°C), likely because of the higher Tre-T skgradient (0.3°C) at 1500. These data indicate that shivering and vasoconstriction are not affected by time of day. These observations raise the possibility that CWI may increase the risk of hypothermia in the early morning because of a lower initial Tcore.


1988 ◽  
Vol 65 (5) ◽  
pp. 1984-1989 ◽  
Author(s):  
J. H. Bittel ◽  
C. Nonotte-Varly ◽  
G. H. Livecchi-Gonnot ◽  
G. L. Savourey ◽  
A. M. Hanniquet

The relationship between the physical fitness level (maximal O2 consumption, VO2max) and thermoregulatory reactions was studied in 17 adult males submitted to an acute cold exposure. Standard cold tests were performed in nude subjects, lying for 2 h in a climatic chamber at three ambient air temperatures (10, 5, and 1 degrees C). The level of physical fitness conditioned the intensity of thermoregulatory reactions to cold. For all subjects, there was a direct relationship between physical fitness and 1) metabolic heat production, 2) level of mean skin temperature (Tsk), 3) level of skin conductance, and 4) level of Tsk at the onset of shivering. The predominance of thermogenic or insulative reactions depended on the intensity of the cold stress: insulative reactions were preferential at 10 degrees C, or even at 5 degrees C, whereas colder ambient temperature (1 degree C) triggered metabolic heat production abilities, which were closely related to the subject's physical fitness level. Fit subjects have more efficient thermoregulatory abilities against cold stress than unfit subjects, certainly because of an improved sensitivity of the thermoregulatory system.


2001 ◽  
Vol 47 (156) ◽  
pp. 147-151 ◽  
Author(s):  
He Yuanqing ◽  
Wilfred H. Theakstone ◽  
Yao Tandong ◽  
Shi Yafeng

AbstractStratigraphic variations of oxygen isotopes in the snow which accumulates during the winter at the Norwegian glacier Austre Okstindbreen are not entirely eliminated after 1–2 months of ablation in the following summer. The relationship between regional temperature changes and δ18O values in the snowpack is affected by many natural factors, but 1989/90 winter air temperatures were reflected in the snow which remained on Austre Okstindbreen at 1350 m a.s.l. in July 1990. There were many variations of δ18O values in the 4.1m of snow above the 1989 summer surface, but variations in the underlying firn were relatively small. Meltwater percolation modifies the initial variations of δ18O values in the snowpack. At a site below the mean equilibrium-line altitude on Austre Okstindbreen, increased isotopic homogenization within a 10 day period in July accompanied an increase of the mean δ18O value. Although the isotopic record at a temperate glacier is likely to be influenced by more factors than is that at polar glaciers, it can provide an estimate of the approximate trend of local temperature variations.


1996 ◽  
Vol 47 (5) ◽  
pp. 817 ◽  
Author(s):  
GJ Murtagh ◽  
GR Smith

Changes in the concentration, composition, and yield of oil in coppice growth of tea tree (Melaleuca alternzfolia) were assessed when plants were harvested in different months. Oil concentrations in leaves were lower when plants were harvested in July-September than in other months, but biomass yields were higher. Consequently, there was no consistent effect of harvest month on oil yield. Oil yield varied as much between the same month in different years, as between months within a year. The oil concentration in one harvest was positively related to the biomass yield at the previous harvest of the same plants, suggesting that a carryover of energy reserves contributed to oil production. The oil concentration was also positively related to the mean air temperatures over the 3 months before harvest. The proportion of the economically significant compounds in oil, terpinen-4-01 and 1,8-cineole, was not affected by either the month of harvest or regrowth cycle, but other compounds did change. There was a significant loss of monoterpene olefins from oil which was present at high concentrations.


Sign in / Sign up

Export Citation Format

Share Document