Rice phosphate transporters associated with phosphate uptake in rice roots colonised with arbuscular mycorrhizal fungi

2007 ◽  
Vol 85 (7) ◽  
pp. 644-651 ◽  
Author(s):  
Donna Glassop ◽  
Rosamond M. Godwin ◽  
Sally E. Smith ◽  
Frank W. Smith

The completed rice-genome sequence was screened with a known inorganic phosphate (Pi) transporter sequence to reveal a family of 13 Pi transporters. This family can be used for studies into Pi acquisition and translocation throughout the plant. Plants that form symbiotic associations with arbuscular mycorrhizal (AM) fungi are of particular interest with respect to Pi acquisition because of their ability to utilize both direct and fungal pathways of uptake. Localization of transcripts of two Pi transporters by real-time RT-PCR and in situ hybridization were conducted in rice subjected to low Pi, high Pi, and AM colonization. One Pi transporter, ORYsa;Pht1;13, was detected in rice roots under all growth conditions. ORYsa;Pht1;11 was only expressed in roots colonized by AM fungi. Antisense RNA probes of ORYsa;Pht1;11 localized to cortical cells containing arbuscules and hyphal coils, formed by Glomus intraradices Schenck and Smith and Scutellospora calospora (Nicolson and Gerdemann) Walker and Sanders, respectively. Localization of the ORYsa;Pht1;13 probes was similar to that observed for ORYsa;Pht1;11 in colonized rice roots. This research proposes that at least two rice Pi transporters are involved in acquiring Pi via AM fungi, emphasising the complexity of Pi acquisition in plants with access to two Pi uptake pathways.

Botany ◽  
2008 ◽  
Vol 86 (9) ◽  
pp. 1009-1019 ◽  
Author(s):  
Maria Manjarrez ◽  
F. Andrew Smith ◽  
Petra Marschner ◽  
Sally E. Smith

For the first time, the phenotypes formed in the reduced mycorrhizal colonization (rmc) Solanum lycopersicum  L. (tomato) mutant with different arbuscular mycorrhizal (AM) fungi were used to explore the potential of different fungal structures to support development of external fungal mycelium and spores. The life cycle of AM fungi with rmc was followed for up to 24 weeks. Results showed that production of external mycelium was slight and transitory for those fungi that did not penetrate the roots of rmc (Pen–) ( Glomus intraradices DAOM181602 and Glomus etunicatum ). For fungi that penetrated the root epidermis and hypodermis (Coi–, Glomus coronatum and Scutellospora calospora ) the mycelium produced varied in size, but was always smaller than with the wild-type 76R. Spores were formed by these fungi with 76R but not with rmc. The only fungus forming a Myc+ phenotype with rmc, G. intraradices WFVAM23, produced as much mycelium with rmc as with 76R. We observed lipid accumulation in hyphae and vesicles in both plant genotypes with this fungus. Mature spores were formed with 76R. However, with rmc, spores remained small and (presumably) immature for up to 24 weeks. We conclude that significant carbon transfer from plant to fungus can occur in Coi– interactions with rmc in which no cortical colonization occurs. We speculate that both carbon transfer and root signals are required for mature spores to be produced.


2019 ◽  
Author(s):  
Yuta Sugiura ◽  
Rei Akiyama ◽  
Sachiko Tanaka ◽  
Koji Yano ◽  
Hiromu Kameoka ◽  
...  

AbstractArbuscular mycorrhizal (AM) fungi, forming symbiotic associations with land plants, are obligate symbionts that cannot complete their natural life cycle without a host. Recently, fatty acid auxotrophy of AM fungi is supported by studies showing that lipids synthesized by the host plants are transferred to the fungi and that the latter lack genes encoding cytosolic fatty acid synthases (1-7). Therefore, to establish an asymbiotic cultivation system for AM fungi, we tried to identify the fatty acids that could promote biomass production. To determine whether AM fungi can grow on medium supplied with fatty acids or lipids under asymbiotic conditions, we tested eight saturated or unsaturated fatty acids (C12–C18) and two β-monoacylglycerols. Only myristate (C14:0) led to an increase in biomass of Rhizophagus irregularis, inducing extensive hyphal growth and formation of infection-competent secondary spores. However, such spores were smaller than those generated symbiotically. Furthermore, we demonstrated that R. irregularis can take up fatty acids in its branched hyphae and use myristate as a carbon and energy source. Myristate also promoted the growth of Rhizophagus clarus and Gigaspora margarita. Finally, mixtures of myristate and palmitate accelerated fungal growth and induced a substantial change in fatty acid composition of triacylglycerol compared with single myristate application, although palmitate was not used as a carbon source for cell wall biosynthesis in this culture system. In conclusion, here we demonstrate that myristate boosts asymbiotic growth of AM fungi and can also serve as a carbon and energy source.Significance statementThe origins of arbuscular mycorrhizal (AM) fungi, which form symbiotic associations with land plants, date back over 460 million years ago. During evolution, these fungi acquired an obligate symbiotic lifestyle, and thus depend on their host for essential nutrients. In particular, fatty acids are regarded as crucial nutrients for the survival of AM fungi owing to the absence of genes involved in de novo fatty acid biosynthesis in the AM fungal genomes that have been sequenced so far. Here, we show that myristate initiates AM fungal growth under asymbiotic conditions. These findings will advance pure culture of AM fungi.


2003 ◽  
Vol 69 (11) ◽  
pp. 6762-6767 ◽  
Author(s):  
Ingrid M. van Aarle ◽  
Pål Axel Olsson

ABSTRACT We monitored the development of intraradical and extraradical mycelia of the arbuscular mycorrhizal (AM) fungi Scutellospora calospora and Glomus intraradices when colonizing Plantago lanceolata. The occurrence of arbuscules (branched hyphal structures) and vesicles (lipid storage organs) was compared with the amounts of signature fatty acids. The fatty acid 16:1ω5 was used as a signature for both AM fungal phospholipids (membrane constituents) and neutral lipids (energy storage) in roots (intraradical mycelium) and in soil (extraradical mycelium). The formation of arbuscules and the accumulation of AM fungal phospholipids in intraradical mycelium followed each other closely in both fungal species. In contrast, the neutral lipids of G. intraradices increased continuously in the intraradical mycelium, while vesicle occurrence decreased after initial rapid root colonization by the fungus. S. calospora does not form vesicles and accumulated more neutral lipids in extraradical than in intraradical mycelium, while the opposite pattern was found for G. intraradices. G. intraradices allocated more of its lipids to storage than did S. calospora. Thus, within a species, the fatty acid 16:1ω5 is a good indicator for AM fungal development. The phospholipid fatty acid 16:1ω5 is especially suitable for indicating the frequency of arbuscules in the symbiosis. We propose that the ratio of neutral lipids to phospholipids is more important than is the presence of vesicles in determining the storage status of AM fungi.


2011 ◽  
Vol 24 (2) ◽  
pp. 260-270 ◽  
Author(s):  
Arijit Mukherjee ◽  
Jean-Michel Ané

Arbuscular mycorrhizal (AM) fungi stimulate root development and induce expression of mycorrhization-specific genes in both eudicots and monocots. Diffusible factors released by AM fungi have been shown to elicit similar responses in Medicago truncatula. Colonization of roots by AM fungi is inhibited by ethylene. We compared the effects of germinating spore exudates (GSE) from Glomus intraradices in monocots and in eudicots, their genetic control, and their regulation by ethylene. GSE modify root architecture and induce symbiotic gene expression in both monocots and eudicots. The genetic regulation of root architecture and gene expression was analyzed using M. truncatula and rice symbiotic mutants. These responses are dependent on the common symbiotic pathway as well as another uncharacterized pathway. Significant differences between monocots and eudicots were observed in the genetic control of plant responses to GSE. However, ethylene inhibits GSE-induced symbiotic gene expression and root development in both groups. Our results indicate that GSE signaling shares similarities and differences in monocots versus eudicots, that only a subset of AM signaling pathways has been co-opted in legumes for the establishment of root nodulation with rhizobia, and that regulation of these pathways by ethylene is a feature conserved across higher land plants.


New Forests ◽  
2021 ◽  
Author(s):  
Magdalena Kulczyk-Skrzeszewska ◽  
Barbara Kieliszewska-Rokicka

AbstractPopulus nigra ‘Italica’ (Lombardy poplar) is a breeding cultivar of black poplar, widely used as a street tree or windbreak, often exposed to salinity and limited water availability. Populus roots can develop dual mycorrhizal associations with ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) fungi, and with non-mycorrhizal fungal endophytes (FE). The symbiotic fungi may alleviate the effects of adverse environmental conditions. We investigated the performance (growth and symbiotic associations) of one-year-old Populus nigra ‘Italica’ grown from woody cuttings in soil from natural poplar habitat and subjected to water scarcity and soil salinity (50 mM NaCl, 150 mM NaCl, 250 mM NaCl). With increasing soil salinity, a decrease in the growth parameters of the aboveground parts of the poplar plantlets and their fine roots were found; however, the roots were more resistant to the stress factors analyzed than the shoots. ECMF, AMF, and non-mycorrhizal FE were all tolerant to increased salt levels in the soil, and the ECM abundance was significantly higher under conditions of mild salinity (50 mM NaCl, 150 mM NaCl) compared to the control plants and those treated with 250 mM NaCl. Our results indicated that enhanced soil salinity increased the content of sodium and chlorine in leaves, but did not affect significantly the concentrations potassium, magnesium, calcium, phosphorus, or nitrogen. Significant accumulation of proline in leaves suggest salt stress of P. nigra ‘Italica’ treated with 250 mM NaCl and contribution of proline to the plant defense reactions.


2010 ◽  
Vol 23 (6) ◽  
pp. 740-747 ◽  
Author(s):  
Sergio Svistoonoff ◽  
Mame-Ourèye Sy ◽  
Nathalie Diagne ◽  
David G. Barker ◽  
Didier Bogusz ◽  
...  

The MtEnod11 gene from Medicago truncatula is widely used as an early infection-related molecular marker for endosymbiotic associations involving both rhizobia and arbuscular mycorrhizal fungi. In this article, heterologous expression of the MtEnod11 promoter has been studied in two actinorhizal trees, Casuarina glauca and Allocasuarina verticillata. Transgenic C. glauca and A. verticillata expressing a ProMtEnod11::β-glucuronidase (gus) fusion were generated and the activation of the transgene investigated in the context of the symbiotic associations with the N-fixing actinomycete Frankia and both endo- and ectomycorrhizal fungi (Glomus intraradices and Pisolithus albus, respectively). ProMtEnod11::gus expression was observed in root hairs, prenodules, and nodules and could be correlated with the infection of plant cells by Frankia spp. However, no activation of the gus reporter gene was detected prior to infection or in response to either rhizobial Nod factors or the wasp venom peptide MAS-7. Equally, ProMtEnod11::gus expression was not elicited during the symbiotic associations with either ecto- or endomycorrhizal fungi. These observations suggest that, although there is a conservation of gene regulatory pathways between legumes and actinorhizal plants in cells accommodating endosymbiotic N-fixing bacteria, the events preceding bacterial infection or related to mycorrhization appear to be less conserved.


Botany ◽  
2011 ◽  
Vol 89 (4) ◽  
pp. 285-288 ◽  
Author(s):  
Antonio Illana ◽  
José M. García-Garrido ◽  
Inmaculada Sampedro ◽  
Juan A. Ocampo ◽  
Horst Vierheilig

Although most land plants are hosts for arbuscular mycorrhizal fungi (AMF), a small number of plant families are arbuscular mycorrhizal (AM) nonhosts. There are indications that strigolactone levels in root exudates of AM nonhost plants are lower than in AM host plants, and it has been shown that in the strigolactone-deficient rms1 mutant (ccd8) of the AM host plant pea, the AMF colonization of roots is highly reduced. Application of the synthetic strigolactone analogue GR24 to this strigolactones-deficient mutant restored AMF colonization of roots. Our objective was to determine whether the application of GR24 to AM nonhost plants can affect their susceptibility to AMF. To test whether GR24 affects AMF colonization in our experimental system, we added GR24 to the strigolactone-deficient pea ccd8 mutant. Application of GR24 increased AMF colonization in the pea mutant to a similar level as in the pea wild type with normal strigolactone levels, showing clearly that in our experimental setup, application of the GR24 positively affects AMF colonization in strigolactone-deficient plants. Observation of cleared roots after application of GR24 to four AM nonhost plant species inoculated with the AMF Glomus intraradices showed that colonization did not occur.


2001 ◽  
Vol 14 (10) ◽  
pp. 1140-1148 ◽  
Author(s):  
Ignacio E. Maldonado-Mendoza ◽  
Gary R. Dewbre ◽  
Maria J. Harrison

The majority of vascular flowering plants are able to form symbiotic associations with arbuscular mycorrhizal fungi. These symbioses, termed arbuscular mycorrhizas, are mutually beneficial, and the fungus delivers phosphate to the plant while receiving carbon. In these symbioses, phosphate uptake by the arbuscular mycorrhizal fungus is the first step in the process of phosphate transport to the plant. Previously, we cloned a phosphate transporter gene involved in this process. Here, we analyze the expression and regulation of a phosphate transporter gene (GiPT) in the extra-radical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices during mycorrhizal association with carrot or Medicago truncatula roots. These analyses reveal that GiPT expression is regulated in response to phosphate concentrations in the environment surrounding the extra-radical hyphae and modulated by the overall phosphate status of the mycorrhiza. Phosphate concentrations, typical of those found in the soil solution, result in expression of GiPT. These data imply that G. intraradices can perceive phosphate levels in the external environment but also suggest the presence of an internal phosphate sensing mechanism.


2009 ◽  
Vol 22 (9) ◽  
pp. 1169-1178 ◽  
Author(s):  
Ricardo Aroca ◽  
Alberto Bago ◽  
Moira Sutka ◽  
José Antonio Paz ◽  
Custodia Cano ◽  
...  

Roots of most plants in nature are colonized by arbuscular mycorrhizal (AM) fungi. Among the beneficial effects of this symbiosis to the host plant is the transport of water by the AM mycelium from inaccessible soil water resources to host roots. Here, an aquaporin (water channel) gene from an AM fungus (Glomus intraradices), which was named GintAQP1, is reported for the first time. From experiments in different colonized host roots growing under several environmental conditions, it seems that GintAQP1 gene expression is regulated in a compensatory way regarding host root aquaporin expression. At the same time, from in vitro experiments, it was shown that a signaling communication between NaCl-treated mycelium and untreated mycelium took place in order to regulate gene expression of both GintAQP1 and host root aquaporins. This communication could be involved in the transport of water from osmotically favorable growing mycelium or host roots to salt-stressed tissues.


Author(s):  
Yanhong Wang ◽  
Minqiang Wang ◽  
Yan Li ◽  
Aiping Wu ◽  
Juying Huang

The study aimed to investigate the effects of colonization with two arbuscular mycorrhizal (AM) fungi, Funneliformis mosseae , Diversispora versiformis , alone and in combination on the growth and nutrient acquisition of NaCl-stressed Chrysanthemum morifolium (Hangbaiju) plants in the greenhouse experiment. Mycorrhizal and non-mycorrhizal Hangbaiju plants were grown under different salinity levels imposed by 0, 50 and 200 mM NaCl for five months, following 6 weeks of non-saline pre-treatment. The results showed that root length, shoot and root dry weight, total dry weight, shoot and root N concentration were higher in mycorrhizal than in non-mycorrhizal plants under moderate saline conditions especially with D. versiformis colonization. As salinity increased, the mycorrhizal colonization, the mycorrhizal dependence (MD) decreased. Enhancement of tissue N acquisition is probably the main mechanism underlying salt tolerance in AM plants. It is suggested that the symbiotic associations between D. versiformis fungus and C. morifolium plants may be taken as a biotechnological practice in culture.


Sign in / Sign up

Export Citation Format

Share Document