scholarly journals Enhancements of Arbuscular Mycorrhizal Fungi on Growth and Nitrogen Acquisition of Chrysanthemum morifolium under Salt Stress 

Author(s):  
Yanhong Wang ◽  
Minqiang Wang ◽  
Yan Li ◽  
Aiping Wu ◽  
Juying Huang

The study aimed to investigate the effects of colonization with two arbuscular mycorrhizal (AM) fungi, Funneliformis mosseae , Diversispora versiformis , alone and in combination on the growth and nutrient acquisition of NaCl-stressed Chrysanthemum morifolium (Hangbaiju) plants in the greenhouse experiment. Mycorrhizal and non-mycorrhizal Hangbaiju plants were grown under different salinity levels imposed by 0, 50 and 200 mM NaCl for five months, following 6 weeks of non-saline pre-treatment. The results showed that root length, shoot and root dry weight, total dry weight, shoot and root N concentration were higher in mycorrhizal than in non-mycorrhizal plants under moderate saline conditions especially with D. versiformis colonization. As salinity increased, the mycorrhizal colonization, the mycorrhizal dependence (MD) decreased. Enhancement of tissue N acquisition is probably the main mechanism underlying salt tolerance in AM plants. It is suggested that the symbiotic associations between D. versiformis fungus and C. morifolium plants may be taken as a biotechnological practice in culture.

Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 130
Author(s):  
Flor Hernandez ◽  
Rosalinda Villarreal ◽  
Valentin Torres ◽  
Adrien Gallou

Research into the symbiotic relationship between plants and arbuscular mycorrhizal fungi (AMF) is key for sustainable agricultural intensification. The objective of the present study is to evaluate native AMF at the monosporic level in greenhouse-grown, economically important crops. Agricultural soil samples from three locations (Saltillo, Zaragoza, and Parras) were obtained by combining portions resulting from a zigzag sampling pattern. From these samples, 15 morphotypes were extracted according to a modified Gerdemann’s technique and monosporically inoculated on melon, cucumber, tomato, and onion, 30 days after their sowing. Under a completely random experimental design, 16 treatments with three repetitions were defined. Plant height, root length, stem diameter, total fresh weight, fresh root weight, dry root weight, bulb weight, fresh leaf weight, total dry weight, flower number, leaf number, fruit number, spore number, and percentage of colonization were all evaluated. The results were subjected to the analysis of variance (ANOVA) and the Tukey comparison test (p ≤ 0.05), which showed that the monosporic inoculation favors significantly the AMF and the host, while the T6 (Saltillo spore + Steiner modified with 20% of the normal phosphorus concentration) showed a greater response uniformity on onion and melon, which indicates its great potential as an inoculum.


2007 ◽  
Vol 85 (7) ◽  
pp. 644-651 ◽  
Author(s):  
Donna Glassop ◽  
Rosamond M. Godwin ◽  
Sally E. Smith ◽  
Frank W. Smith

The completed rice-genome sequence was screened with a known inorganic phosphate (Pi) transporter sequence to reveal a family of 13 Pi transporters. This family can be used for studies into Pi acquisition and translocation throughout the plant. Plants that form symbiotic associations with arbuscular mycorrhizal (AM) fungi are of particular interest with respect to Pi acquisition because of their ability to utilize both direct and fungal pathways of uptake. Localization of transcripts of two Pi transporters by real-time RT-PCR and in situ hybridization were conducted in rice subjected to low Pi, high Pi, and AM colonization. One Pi transporter, ORYsa;Pht1;13, was detected in rice roots under all growth conditions. ORYsa;Pht1;11 was only expressed in roots colonized by AM fungi. Antisense RNA probes of ORYsa;Pht1;11 localized to cortical cells containing arbuscules and hyphal coils, formed by Glomus intraradices Schenck and Smith and Scutellospora calospora (Nicolson and Gerdemann) Walker and Sanders, respectively. Localization of the ORYsa;Pht1;13 probes was similar to that observed for ORYsa;Pht1;11 in colonized rice roots. This research proposes that at least two rice Pi transporters are involved in acquiring Pi via AM fungi, emphasising the complexity of Pi acquisition in plants with access to two Pi uptake pathways.


2019 ◽  
Author(s):  
Yuta Sugiura ◽  
Rei Akiyama ◽  
Sachiko Tanaka ◽  
Koji Yano ◽  
Hiromu Kameoka ◽  
...  

AbstractArbuscular mycorrhizal (AM) fungi, forming symbiotic associations with land plants, are obligate symbionts that cannot complete their natural life cycle without a host. Recently, fatty acid auxotrophy of AM fungi is supported by studies showing that lipids synthesized by the host plants are transferred to the fungi and that the latter lack genes encoding cytosolic fatty acid synthases (1-7). Therefore, to establish an asymbiotic cultivation system for AM fungi, we tried to identify the fatty acids that could promote biomass production. To determine whether AM fungi can grow on medium supplied with fatty acids or lipids under asymbiotic conditions, we tested eight saturated or unsaturated fatty acids (C12–C18) and two β-monoacylglycerols. Only myristate (C14:0) led to an increase in biomass of Rhizophagus irregularis, inducing extensive hyphal growth and formation of infection-competent secondary spores. However, such spores were smaller than those generated symbiotically. Furthermore, we demonstrated that R. irregularis can take up fatty acids in its branched hyphae and use myristate as a carbon and energy source. Myristate also promoted the growth of Rhizophagus clarus and Gigaspora margarita. Finally, mixtures of myristate and palmitate accelerated fungal growth and induced a substantial change in fatty acid composition of triacylglycerol compared with single myristate application, although palmitate was not used as a carbon source for cell wall biosynthesis in this culture system. In conclusion, here we demonstrate that myristate boosts asymbiotic growth of AM fungi and can also serve as a carbon and energy source.Significance statementThe origins of arbuscular mycorrhizal (AM) fungi, which form symbiotic associations with land plants, date back over 460 million years ago. During evolution, these fungi acquired an obligate symbiotic lifestyle, and thus depend on their host for essential nutrients. In particular, fatty acids are regarded as crucial nutrients for the survival of AM fungi owing to the absence of genes involved in de novo fatty acid biosynthesis in the AM fungal genomes that have been sequenced so far. Here, we show that myristate initiates AM fungal growth under asymbiotic conditions. These findings will advance pure culture of AM fungi.


2002 ◽  
Vol 82 (3) ◽  
pp. 272-278 ◽  
Author(s):  
A. Liu ◽  
C. Hamel ◽  
A. Elmi ◽  
C. Costa ◽  
B. Ma ◽  
...  

Little attention has been paid to the effect of arbuscular mycorrhizal (AM) fungi on the uptake of nutrients that move mainly by mass flow. The objective of this study was to assess the possible contribution of indigenous AM fungi to the K, Ca and Mg nutrition of maize (Zea mays L.) as influenced by soil P levels and its impact on plant dry mass. The field experiment had a split plot design with four replicates. Treatments included soil fumigation status (fumigation and non-fumigation) and three levels of P fertilization (0, 60 and 120 kg P2O5 ha-1) in a loamy sand soil in 1997 and a fine sandy loam soil in 1998. Soil fumigati on with Basamid® was used to suppress indigenous AM fungi. Plants were sampled at four different growth stages (6-leaf stage, 10-leaf stage, tasseling and silking). Soil fumigation decreased shoot dry weight, but P fertilization increased shoot dry weight at most sampling times. When no P fertilizer was added, fumigation in the loamy sand soil reduced shoot K and Ca concentrations while, in contrast, in the fine sandy loam soil only Mg concentration was reduced by soil fumigation. The concentration of K in maize shoots was positively correlated (P < 0.05) with extraradicular hyphal length in both soils. The correlation between the abundance of extraradicular hyphae and the concentrations of Ca and Mg in maize shoots was significant only for soils where available Ca or Mg was relatively low. Arbuscular mycorrhizal fungi could increase corn biomass production and K, Ca and Mg uptake in soil low in these elements and low in P. These results indicate that the contribution of mycorrhizae to maize K, Ca and Mg nutrition can be significant in a field situation and that the extent of this contribution depends on the availability of these nutrients and of P in soils. Key words: Arbuscular mycorrhizal fungi, soil fumigation, extraradicular hyphae, uptake of K, Ca, and Mg, soil P levels, maize


2012 ◽  
Vol 63 (2) ◽  
pp. 164 ◽  
Author(s):  
B. A. L. Wilson ◽  
G. J. Ash ◽  
J. D. I. Harper

Messina [Melilotus siculus (Turra) Vitman ex. B. D Jacks] is a salt- and waterlogging-tolerant annual legume that could be highly productive on saline land. Arbuscular mycorrhizal (AM) fungi form a symbiotic relationship with the majority of terrestrial plant species, and improved productivity of plants inoculated with AM fungi under saline conditions has been attributed to the increased uptake of nutrients such as phosphorus (P). However, the mycorrhizal status of M. siculus under saline or non-saline conditions is unknown, as is the role of AM in improved nutrition and nodulation. In this study, the role of AM fungi in growth improvement and nodulation of M. siculus was examined in saline and non-saline soil. The M. siculus plants were inoculated with either a single AM species or mixed AM species, or remained uninoculated, and were grown at three levels of sodium chloride (NaCl) (0, 80, and 250 mm NaCl). AM-inoculated plants had significantly greater nodulation than plants that did not receive AM inoculum, regardless of salinity level. Plants inoculated with mixed AM species at 250 mm NaCl showed improved survival (90%) compared with the plants inoculated with single AM species or uninoculated control plants (30%). Within each salinity level, plants inoculated with mixed AM species had significantly greater dry weight than all other treatments. In addition, plants inoculated with mixed AM species had increased total uptake of P. It is likely that the increased growth observed in AM-inoculated M. siculus plants is due to improved P nutrition, showing the potential of AM fungi to enhance the growth of M. siculus on saline land.


2021 ◽  
Vol 914 (1) ◽  
pp. 012049
Author(s):  
D Prameswari ◽  
R S B Irianto ◽  
F D Tuheteru ◽  
T Kalima

Abstract A screw tree (Helicteres isora L.) is a small/large shrub species that grows and spreads in many Asian countries, including Indonesia (NTT and Maluku). It is a medicinal plant commonly used to treat many diseases, such as bleeding and constipation. This study aimed to determine the effect of Arbuscular Mycorrhizal (AM) fungi and planting media on the growth of screw tree seedlings in a nursery. This research was conducted at Bogor Forest Research and Development Center’s nursery, Indonesia. This study consisted of two factors: AM fungi with three levels, namely control, Glomus aggregatum and Glomus clarum and growth media with two levels, namely mixed media of soil: rice husk charcoal (2:1) and mixed soil of media: rice husk charcoal: cocopeat (2:1:1). The results showed that treatment of G. aggregatum and soil mixed of media: rice husk charcoal: cocopeat (2:1:1) was significantly different from other treatments except for G. clarum and soil mixture of media: rice husk charcoal: cocopeat (2:1:1) that significantly increased height, diameter and dry weight of seedlings and the values were 97, 56, 126 and 46, 37, 127% compared to the control. Mycorrhizal dependency of screw tree was very high (126 and 127%). Generally, interaction treatment of G. clarum and mixed media of soil: rice husk charcoal: cocopeat (2:1:1) increased the growth of 11-month-old screw tree in the nursery.


2018 ◽  
Vol 47 (1) ◽  
pp. 221-226 ◽  
Author(s):  
Leo SABATINO ◽  
Fabio D’ANNA ◽  
Livio TORTA ◽  
Giorgio FERRARA ◽  
Giovanni IAPICHINO

Herbaceous plants used in island beds and borders need to be rapid growing, high performing and maintaining good visual quality during the growing season. Arbuscular mycorrhizal (AM) fungi application is acquiring interest for its beneficial effects on ornamental bedding plants. Gazania rigens is a herbaceous ornamental plant grown for its large daisy-like flowers. The species thrives in the coastal areas of the Mediterranean region, particularly in the mild climate of southern Italy and Sicily, where performs well in summer bedding schemes in sea side gardens even in dry and windy conditions. The aim of this study was to evaluate the effect of inoculation with Rhizophagus irregularis on several ornamental parameters of Gazania rigens. Prior to transplanting, three-months-old plants received a mycorrhizal inoculum carrying 40 spores g-1 of Rhizophagus irregularis. Inoculum was applied at a rate of 10 g plant-1. The AM application significantly increased number of flowers per clump by 100% and number of flowers per plant by 124.0%. Rhizophagus irregularis also positively influenced number of leaves per plant, plant height, and roots dry weight. Our findings indicated that mycorrhizal inoculation with R. irregularis may be beneficial to nursery growers wishing to produce high quality gazania for spring-summer bedding plant schemes.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1105
Author(s):  
Raffaella Balestrini ◽  
Cecilia Brunetti ◽  
Walter Chitarra ◽  
Luca Nerva

Arbuscular mycorrhizal (AM) fungi are root symbionts that provide mineral nutrients to the host plant in exchange for carbon compounds. AM fungi positively affect several aspects of plant life, improving nutrition and leading to a better growth, stress tolerance, and disease resistance and they interact with most crop plants such as cereals, horticultural species, and fruit trees. For this reason, they receive expanding attention for the potential use in sustainable and climate-smart agriculture context. Although several positive effects have been reported on photosynthetic traits in host plants, showing improved performances under abiotic stresses such as drought, salinity and extreme temperature, the involved mechanisms are still to be fully discovered. In this review, some controversy aspects related to AM symbiosis and photosynthesis performances will be discussed, with a specific focus on nitrogen acquisition-mediated by AM fungi.


2016 ◽  
Vol 73 (1) ◽  
Author(s):  
Happy WIDIASTUTI ◽  
Nampiah SUKARNO ◽  
Latifah Kosim DARUSMAN ◽  
Didiek Hadjar GOENADI ◽  
Sally SMITH ◽  
...  

SummaryA green house experiment was conducted tostudy the effect of spore number and species ofAM fungi as inoculant of oil palm. Two species ofAM fungi was evaluated in this study namelyAcaulospora tuberculata and Gigaspora margaritaand three spore number were tested i. e 200, 350,and 500 spores. There two fungi have thepotential as AM fungi inoculant for oil palm. Thesoil used was acid soil from Cikopomayak, WestJava while the oil palm seedling was from OilPalm Research Institute, Medan. A polybag sized20 x 40 cm was used. Spores as type of inoculantaffect the oil palm growth in longer time. Thebest growth of the seedling in term of height,fresh, and dry weight was obtained byinoculation at 500 spores of A. tuberculata andG. margarita. However, at 500 spores perpolybag, growth and N, P, and K uptake ofseedlings inoculated with A. tuberculata andG. margarita were not significantly differentexcept for seedling and root fresh weight. Oilpalm seedling inoculated with A. tuberculata at500 spores per seedling resulted higher root andseedling fresh weight compared with thoseinoculated with G. margarita. The different effectof seedling on A. tuberculata and G. margaritainoculation at 200 and 350 spores per seedlingwere only observed in plant height, fresh and dryweight of seedlings. The plant height, fresh, anddry weight of seedlings inoculated withA. tuberculata at 200 and 350 spores per seedlingwere higher compared with those inoculatedwith G. margarita. In addition inoculation withA. tuberculata at 200 spores per seedling resultedhigher N and K uptake of seedling compared withthose inoculated with G. margarita.RingkasanSuatu penelitian rumah kaca telah dilakukanuntuk mempelajari pengaruh jumlah spora danspesies cendawan mikoriza arbuskula (CMA)sebagai inokulum pada bibit kelapa sawit. Duaspesies CMA yang diuji ialah Acaulosporatuberculata dan Gigaspora margarita sedangkanjumlah spora yang diuji ada tiga tingkat yaitu200, 350, dan 500 spora. Bibit kelapa sawitberumur dua bulan ditanam di polibag berukuran20 x 40 cm yang berisi tanah yang bereaksimasam berasal dari Cikopomayak. Hasil yangdiperoleh menunjukkan bahwa spora sebaganokulum bibit kelapa sawit dapat mempengaruhipertumbuhan kelapa sawit namun diperlukanwaktu yang lebih lama untuk mendapatkanrespons inokulasi. Pertumbuhan tertinggi padapeubah tinggi bibit, bobot basah, dan bobotkering diperoleh pada inokulasi sebanyak 500spora per polibag baik untuk A. tuberculatamaupun G. margarita. Namun, pada inokulasisebanyak 500 spora per polibag, pertumbuhandan serapan N, P, dan K bibit yang diinokulasiA. tuberculata dan G. margarita tidak berbedanyata kecuali pada peubah bobot basah akar danbobot basah bibit. Bobot basah akar dan bobotbasah bibit kelapa sawit yang diinokulasiA. tuberculata sebanyak 500 spora, lebih tinggidibandingkan dengan bibit yang diinokulasidengan G. margarita pada jumlah spora yangsama. Pengaruh spesies hanya dapat ditunjukkanpada inokulasi 200 dan 350 spora khususnya padapeubah tinggi bibit, bobot basah, dan bobotkering bibit. Tinggi bibit, bobot basah dan bobotkering bibit yang diinokulasi A. tuberculata padajumlah spora 200 dan 350 per polibag lebih tinggidibandingkan dengan yang diinokulasiG. margarita. Tampak bahwa inokulasiA. tuberculata dengan 200 spora per polibagmenghasilkan serapan N dan K lebih tinggidibandingkan dengan yang diinokulasiG. margarita pada jumlah spora yang sama.


New Forests ◽  
2021 ◽  
Author(s):  
Magdalena Kulczyk-Skrzeszewska ◽  
Barbara Kieliszewska-Rokicka

AbstractPopulus nigra ‘Italica’ (Lombardy poplar) is a breeding cultivar of black poplar, widely used as a street tree or windbreak, often exposed to salinity and limited water availability. Populus roots can develop dual mycorrhizal associations with ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) fungi, and with non-mycorrhizal fungal endophytes (FE). The symbiotic fungi may alleviate the effects of adverse environmental conditions. We investigated the performance (growth and symbiotic associations) of one-year-old Populus nigra ‘Italica’ grown from woody cuttings in soil from natural poplar habitat and subjected to water scarcity and soil salinity (50 mM NaCl, 150 mM NaCl, 250 mM NaCl). With increasing soil salinity, a decrease in the growth parameters of the aboveground parts of the poplar plantlets and their fine roots were found; however, the roots were more resistant to the stress factors analyzed than the shoots. ECMF, AMF, and non-mycorrhizal FE were all tolerant to increased salt levels in the soil, and the ECM abundance was significantly higher under conditions of mild salinity (50 mM NaCl, 150 mM NaCl) compared to the control plants and those treated with 250 mM NaCl. Our results indicated that enhanced soil salinity increased the content of sodium and chlorine in leaves, but did not affect significantly the concentrations potassium, magnesium, calcium, phosphorus, or nitrogen. Significant accumulation of proline in leaves suggest salt stress of P. nigra ‘Italica’ treated with 250 mM NaCl and contribution of proline to the plant defense reactions.


Sign in / Sign up

Export Citation Format

Share Document